Spelling suggestions: "subject:"sorghum"" "subject:"orghum""
61 |
Relative yields of five grain sorghum hybrids (Sorghum bicolor L. Moench) and their parents at four populationsBait-Almal, Mohamed Ahmed January 1979 (has links)
No description available.
|
62 |
DNA-based markers for ergot resistance in sorghum /Parh, Dipal Kumar. January 2005 (has links) (PDF)
Thesis (Ph.D.) - University of Queensland, 2005. / Includes bibliography.
|
63 |
Combining ability and heterosis for stem sugar traits and grain yield components in dual-purpose sorghum (Sorghum bicolor L. Moench) germplasm /Makanda, Itai. January 2009 (has links)
Thesis (Ph.D.) - University of KwaZulu-Natal, Pietermaritzburg, 2009. / Submitted to the African Centre for Crop Improvement. Full text also available online. Scroll down for electronic link.
|
64 |
Mutagenesis and development of herbicide resistance in sorghum for protection against Striga /Ndung'u, David Kamundia. January 2009 (has links)
Thesis (Ph.D.) - University of KwaZulu-Natal, Pietermaritzburg, 2009. / Submitted to the African Centre for Crop Improvement. Full text also available online. Scroll down for electronic link.
|
65 |
QUANTITATIVE AND MORPHOLOGICAL CHARACTERISTICS OF NP9BR RANDOM-MATING POPULATION OF SORGHUM AFTER NINE CYCLES OF SELECTION (MALE-STERILITY, DROUGHT, HERITABILITY, ARIZONA).CHIGWE, CHARLES FRANCISCO BRADLEY. January 1984 (has links)
This study sought to determine the effects of reselection on the adaptation of a grain sorghum (Sorghum bicolor (L.) Moench) population to heat and drought. A random-mating population, NP9BR, was subjected to selection under heat and moisture stress for nine generations to improve its resistance to drought. One hundred single plants selected from the original (C₀) and the reselected (C₉) population were grouped by maturity and evaluated for drought resistance by measuring morphological and agronomic characters under wet (normal irrigation) and dry (restricted irrigation) conditions at the University of Arizona, Marana Agricultural Center, Arizona. Eighty of the selections were grown under a sprinkler irrigation gradient system at Yuma Mesa Agricultural Center, Arizona. Selection under drought conditions reduced plant height, head exsertion, leaf width and length, and seed weight of the population. Blooming was evened out from predominantly early in C₀ to early, medium and late maturing in C₉. Moisture stress reduced grain yield by an overall 16%. The medium maturing selections suffered less yield reduction than the early and late. Although C₉ progenies showed a greater reduction in grain yield, several of them produced equal yields in wet and dry treatments. Leaf width and length were significantly correlated (p = .1%) with yield under dry conditions in all maturity groups. Most selections with very short narrow leaves had small heads and low yields. Some with medium leaf width and length out-yielded broad-leaved ones especially under dry conditions. Forty percent of the selections from C₉ had good head production characteristics under the irrigation gradient system, compared to only 20% from C₀. There were four times as many selections in C₀ unable to produce heads under the system as there were in C₉. The majority of genotypes with good head production in both populations came from the early maturing group. The highest grain yields came from C₀ selections but some C₉ selections with comparable yields were observed. This study indicates that phenotypic selection may still have potential for isolating high-yield genotypes from random-mating populations but may be inadequate for separating differences in drought tolerance among genotypes.
|
66 |
Specialty sorghums in direct-expansion extrusionPerez Gonzalez, Alejandro Jose 25 April 2007 (has links)
Whole-grain, high-fiber, or decorticated extrudates of excellent properties were
made from white (nonwaxy, heterowaxy, waxy) sorghums or brown tannin-sorghums.
Intact grains or prepared raw materials (cracked, cracked and sifted, decorticated) were
extruded in a high-temperature, short-time (HTST) extruder. Waxy extrudates expanded
less and were softer than those from nonwaxy or heterowaxy sorghums. Waxy
extrudates had bigger air cells and thicker cell walls. Low moisture used in this type of
extrusion and its interaction with the different amylose contents were the causes of the
differences. Whole-grain extrudates from white sorghum had similar sensory
acceptability to those from white decorticated sorghum. They had bland flavor and
appearance and texture characteristic of whole-grain products. Extrudates from tannin
sorghums were reddish brown due to their high levels of phytochemicals. The more
expanded, softer products from whole-grain tannin sorghum were obtained when the
grain was cracked and sifted. Decreased expansion was caused by higher levels of fiber
and greater particle sizes (as in the extruded intact grain), and by reduced particle sizes
(as in the cracked non-sifted grain). Expansion was correlated to smaller air cells with
smooth walls. A simple enzymatic method was developed that isolates the 'gritty'
particles from whole-grain/high-fiber extrudates, which closely correlated with
expansion. Gritty particles were fiber (bran) plus undegraded starchy material. Whole
grain/high fiber extrudates from white and tannin sorghums are an excellent option for
food processors because of their excellent taste, appearance and texture.
|
67 |
Effect of soil-moisture and spacing on grain and stover production of sorghum (Sorghum bicolor (L.) Moench) in the irrigated desertSato, Masahito, 1942- January 1977 (has links)
No description available.
|
68 |
A study of the effects of row spacing in dwarf grain sorghumsWilkins, Howard Denser. January 1953 (has links)
Call number: LD2668 .T4 1953 W48 / Master of Science
|
69 |
Sugar content of the culm of four varieties of sorghum in relation to physiological maturityUrich, Max Albert. January 1962 (has links)
Call number: LD2668 .T4 1962 U73
|
70 |
Comparison of super-thick and conventional grain sorghum management systemsLockhart, Larry L. January 1984 (has links)
Call number: LD2668 .T4 1984 L624 / Master of Science
|
Page generated in 0.0258 seconds