• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New Synthetic Strategies for Improved Gas separation by Nanoporous Organic Polymers

Altarawneh, Suha 01 January 2014 (has links)
Abstract NEW SYNTHETIC STRATEGIES FOR IMPROVED GAS SEPARATION BY NANOPOROUS ORGANIC POLYMERS Suha S. Altarawneh, Ph.D. The emission of carbon dioxide (CO2) from fossil fuel combustion is a major cause of climate change. Therefore, the efficient separation of CO2 from mixtures of gases such as flue gas and impure sources of CH4 (e.g. natural gas and landfill gas) is an essential step in meeting the ever increasing demands on natural gas and creating a cleaner environment. Carbon capture and storage technology (CCS) is one of the methods employed for gas separation using chemisorption and/or physisorption processes. Several materials such as porous polymers and amine solutions have been used as gas adsorbents. However, the amount of energy required for the adsorbent regeneration is one of the main concerns that needs to be addressed. In this regard, porous organic polymers (POPs) with defined porosity and preferential binding affinity for CO2 over N2 and CH4 are some of the most attractive materials that could fulfill the above requirement and are also applicable for use in gas storage and separation. Suitable POPs that can be used for gas storage applications need to have high porosity and mechanical stability under high pressure conditions (~100 bar). Alternatively, the most effective POPs in gas separation are those that have preferential binding affinity for CO2 over other gases present at low pressure settings. In all cases, the chemical nature of POPs and their textural properties are key parameters, however, the modest surface area of most POPs limits their efficiency. With the above considerations in mind, the aim of our research is to develop benzimidazole–linked polymers (BILPs) that have variable porosity levels and chemical functionality to enhance gas separation (CO2/CH4, CO2/N2). We have established new synthetic routes that utilize polycondensation reactions between aryl-aldehydes and aryl-o-diamine building units to construct new BILPs with improved gas separation properties. Our strategy targeted structural and textural modifications of BILPs. We used longer linkers (building units) to improve porosity; however, the flexible linkers offered only low porosity due to network interpenetration. To overcome this challenge, a more controlled network growth rate was assessed by adjusting imine-bond formation rates through different acid loading. The acid, HCl, was used to catalyze imine-bond formation. The new resulting acid-catalyzed BILPs have shown an improved porosity up to 92% compared to the non-catalyzed BILPs. We also used the “rational ligand design” approach to introduce new functionalities into BILPs (-OR) to alter the hydrophobic nature of their pores. In this regard, we have illustrated the applicability of this strategy to BILPs containing flexible aryl-o-diamine linkers. The bulky alkoxy groups were incorporated into the aryl-aldehyde building unit prior to polymerization. The resulting polymers have proven that the presence of the bulky pendant alkoxy-chains plays a significant role during the polymerization process which allows for increased control over network formation, and in turn, porosity. Sorption measurements, selectivity, and heats of adsorption data have confirmed the positive impact of the alkoxy-groups and shown that varying the pendant groups is a promising method for designing highly porous BILPs. In addition to pore functionalization with alkoxy-chains, we used pi-conjugated and N-rich building units to prepare new BILPs that have semiconducting properties in addition to their porous nature. This class of BILPs has shown that the extended-conjugated system improved BILPs electronic properties. The other studies performed in this research, involved the use of DFT theory to investigate CO2/BILPs interaction sites and binding affinities. The computational outcomes of DFT have shown that (C-H) bond of the aryl system is a possible site for CO2 interaction beside the free-N side and hydrogen bonding. All new polymers were characterized by spectral and analytical characterization methods and their sorption data were collected to evaluate their capability as candidates for gas separation applications.
2

Polymères de coordination luminescents 1D et 2D avec des ligands rigides contenant du Pt(II) montrants des propriétés d’adsorption du CO2 / Luminescent 1D-and 2D-coordination polymers constructed with rigid Pt(II)-containing ligands exhibiting CO2 adsorption properties

Juvenal, Frank January 2017 (has links)
La conception de nouveaux matériaux fonctionnels a une longue histoire. Durant les deux dernières décennies, le domaine des polymères organiques et inorganiques a attiré l'attention des chercheurs. Plus important encore, les matériaux poreux tels que les Metal Organic Frameworks (MOFs), en anglais, Covalent Organic Frameworks (COFs), en anglais, ainsi que des polymères de coordination poreux sont maintenant étudiés de manière intensive en raison de leurs applications potentielles, comprenant le stockage de gaz, la séparation de gaz, la catalyse et la détection. D'un autre côté, les polymères contenant du Pt ont montré l'application potentielle dans les cellules solaires et les diodes électroluminescentes. Le mémoire est divisé en trois sections principales présentant des résultats nouveaux. Dans la première section, le chapitre 2 traite essentiellement de la formation de polymères de coordination (CP) avec des sels CuX (X = Cl, Br, I) et trans-[p-MeSC6H4C≡C-Pt(PMe3)2-C≡CC6H4SMe] (L1), soit dans le PrCN ou PhCN. Les polymères résultants sont soit 2D (bidimensionel) ou 1D (unidimensionel). Cependant, en presence de PrCN ou de PhCN, le CP 2D obtenu avec le CuBr n'a pas incorporé de solvant dans ses espaces vides. D'autre part, le CP 2D et le reste des CP 1D obtenus avaient soit des molécules de solvant de cristallisation dans leurs cavités ou coordonnés au cuivre sur la chaîne. Les unités cuivre-halogénures étaient soit des rhomboïdes Cu2X2 ou le cubane Cu4I4. Leurs mesures photophysiques en présence et en l'absence de molécules de solvant de cristallisation ont été effectuées. En outre, la porosité du CP a été évaluée par BET (N2 à 77 K). Le vapochromisme du CP 2D sans solvant et des CP 1D ont été étudiés, ainsi que les mesures de sorption du CO2 ont été effectuées. De plus, nous avons utilisé CuCN et L1 dans MeCN pour former de nouveaux CP’s. Ceci est rapporté dans la deuxième section, le chapitre 3. Le CP obtenu était inattendu : L1 s’est rompu et du cyanure CN‾ s’est coordonné sur le Pt. Ceci a conduit à la formation d’un CP 1D zigzag. Généralement, les CP sont formés avec L1 via des liens Cu-S ou/et Cu([éta]2-C≡C), mais pas dans le cas du CuCN qui lui forme une chaîne 1D (CuCN)n où le L1 rompu se lie avec cette chaîne via un lien Cu-N. Les propriétés photophysiques et de stabilité thermique ont été étudiées. La troisième section (Chapitre 4) traite d'une exploration des CP formés par la reaction des sels CuX (X = Cl, Br, I) et le trans-[p-MeSC6H4C≡C-Pt(PMe3)2-C≡CC6H4SMe] (L1) ou le trans-[p-MeSC6H4C≡C-Pt(PEt3)2-C≡CC6H4SMe] (L2) dans du MeCN afin de trouver des tendances. L'utilisation de L1 a donné lieu à un CP 2D ou 1D CPs avec le MeCN piégé à l'intérieur des cavités, il y a de l’espace vide. L2 a conduit uniquement à des CP 1D sans molecules de solvant de cristallisation. Des analyses thermogravimétriques, photophysique et des mesures d’adsorption de gaz (uniquement pour ceux avec du solvant) ont été étudiées. / Abstract: The design of new functional materials has a long history. For the past two decades, the field of organic and inorganic polymers has attracted attention of researchers. More importantly, porous materials such as Metal Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs) as well as porous coordination polymers are now being intensively studied due to their potential applications including gas storage, gas separations, catalyst and sensing. On another hand, Pt-containing polymers have shown potential applications in solar cells and light emitting diodes. The masters’ thesis is mainly divided into three main sections presenting new results. In the first section; Chapter 2 mainly discusses the formation of coordination polymers with CuX salts (X= Cl, Br, I) and trans-[p-MeSC6H4C≡C-Pt(PMe3)2-C≡CC6H4SMe] (L1), in either PrCN or PhCN. The resulting polymers obtained were 2D (bidimensional) CPs or 1D (unidimensional) CPs in all cases. However, 2D CPs obtained when CuBr salt is used by either using PrCN or PhCN did not incorporate the solvents in their cavities. On the other hand, the 2D CP and the rest of 1D CPs obtained had either the crystallization molecules in the cavities or coordinated to the copper cluster. The copper-halide clusters were either the rhomboids Cu2X2 fragments or the step cubane Cu4I4. The photophysical measurements in the presence and absence of solvent crystallization molecules were performed. In addition, the porosity of the CPs was evaluated by adsorption isotherms. The vapochromism of the solvent-free 2D and 1D CPs were investigated as well as CO2 sorption measurements were perfomed. Furthermore, we then attempted to use CuCN and L1 in MeCN which is reported in the second section as Chapter 3. The obtained CP was unexpected as L1 broke and a cyanide (CN‾) ion coordinated to the Pt atom leading to the formation of zigzag 1D CP. The coordination bonds Cu-S or/and Cu([eta]2-C≡C) were generally observed with L1, but not in the CuCN case. Instead a 1D chain of (CuCN)n was made and the broken L1 now binds the chain via a Cu-N bond. The photophysical and thermal stability properties were studied. Lastly, the third section, Chapter 4 deals with a potential predictability of CP formation by using CuX salts (X= Cl, Br, I) and either trans-[p-MeSC6H4C≡C-Pt(PMe3)2-C≡CC6H4SMe] (L1) or trans-[p-MeSC6H4C≡C-Pt(PEt3)2-C≡CC6H4SMe] (L2) in MeCN as the solvent. The use of L1 resulted in either 2D or 1D CPs with the MeCN trapped inside of the cavities while L2 resulted in 1D CPs without MeCN being present in their cavities. The thermogravimetric, photophysical as well as gas sorption measurements (only for those with crystalisation molecules) were perfomed.

Page generated in 0.6198 seconds