• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utilizing symmetry in evolutionary design

Valsalam, Vinod K. 13 December 2010 (has links)
Can symmetry be utilized as a design principle to constrain evolutionary search, making it more effective? This dissertation aims to show that this is indeed the case, in two ways. First, an approach called ENSO is developed to evolve modular neural network controllers for simulated multilegged robots. Inspired by how symmetric organisms have evolved in nature, ENSO utilizes group theory to break symmetry systematically, constraining evolution to explore promising regions of the search space. As a result, it evolves effective controllers even when the appropriate symmetry constraints are difficult to design by hand. The controllers perform equally well when transferred from simulation to a physical robot. Second, the same principle is used to evolve minimal-size sorting networks. In this different domain, a different instantiation of the same principle is effective: building the desired symmetry step-by-step. This approach is more scalable than previous methods and finds smaller networks, thereby demonstrating that the principle is general. Thus, evolutionary search that utilizes symmetry constraints is shown to be effective in a range of challenging applications. / text
2

Evoluční návrh využívající přepisovací systémy / Evolutionary Design Using Rewriting Systems

Nétková, Barbora January 2016 (has links)
This master’s thesis proposes a method for the evolutionary design of rewriting systems. In particular, genetic algorithm will be applied to design rewriting rules for a specific variant of Lindenmayer system. The evolved rules of such grammar will be applied to generate growing sorting networks. Some distinct approaches to the rewriting process and construction of the sorting networks will be investigated. It will be shown that the evolution is able to successfully design rewriting rules for the proposed variants of rewriting processes. The results obtained exhibit abilities to successfully create partially growing sorting networks, which was evolved to grow for fewer inputs and in subsequent iterations grows up to 36 inputs.
3

Finding Better Sorting Networks

Al-Haj Baddar, Sherenaz Waleed 15 April 2009 (has links)
No description available.

Page generated in 0.0728 seconds