• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 12
  • 9
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 72
  • 72
  • 28
  • 28
  • 28
  • 17
  • 17
  • 16
  • 16
  • 16
  • 16
  • 13
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Zum Einfluss vertikaler Gradienten meteorologischer Größen auf die Laufzeit von akustischen Signalen zwischen Schallquellen und Schallempfängern in der bodennahen Atmosphäre

Ziemann, Astrid 04 January 2017 (has links) (PDF)
Die Schallausbreitung in der Atmosphäre wird durch vertikale Gradienten meteorologischer Größen, insbesondere Lufttemperatur und Windvektor, maßgeblich beeinflusst. Ziel dieser Studie ist die Abschätzung des Einflusses einer Schallstrahlenrefraktion infolge von Temperatur- und Windgradienten auf die Laufzeit akustischer Signale zwischen Sendern und Empfängern. Mit Hilfe des hier vorgestellten Schallstrahlenmodells SMART (Sound propagation model of the atmosphere using ray-tracing) wird die Differenz der Laufzeiten entlang des gekrümmten Schallweges (mit Refraktion) und entlang der geraden Verbindungslinie (ohne Refraktion) zwischen einem Sender und einem Empfänger berechnet. Je größer die Sender-Empfänger-Entfernung und je größer der Unterschied zwischen Sender- und Empfängerhöhe sind, desto größer sind auch die Beträge der Laufzeitunterschiede. Der gekoppelte Einfluss von Temperatur- und Windprofil auf die Schallstrahlenrefraktion lässt zum großen Teil jedoch keine pauschalen Abschätzungen der Laufzeitdifferenz zu. Die erzielten Untersuchungsergebnisse werden insbesondere für eine Einschätzung der Anwendbarkeit einer Schallstrahlapproximation (geradlinige Schallstrahlen) bei der akustischen Laufzeittomographie benötigt. / Sound propagation inside the atmosphere is mainly influenced by vertical gradients of meteorological quantities, in particular air temperature and wind vector. The aim of this study is to estimate the influence of the sound ray refraction on the travel time of acoustic signals between transmitters and receivers due to temperature and wind gradients. The difference of the travel times along the curved sound ray (with refraction) and along the straight line (without refraction) between the transmitter and the receiver is calculated by means of the presented sound-ray model SMART (Sound propagation model of the atmosphere using ray-tracing). The greater the transmitter-receiver-distances, and the greater the height-level differences of transmitter and receiver, the greater are the travel-time differences. However, the coupled influence of temperature and wind profiles on the sound-ray refraction does mostly not allow an universal estimation of the travel-time difference. The obtained results are necessary to validate the sound-ray approximation (straight-line approximation) applied by the acoustic tomography.
12

Auswirkungen unterschiedlicher Schallausbreitungsmodelle auf die Lärmprognose

Ziemann, Astrid 11 January 2017 (has links) (PDF)
Eine wichtige Aufgabe des Umweltschutzes besteht in der Überwachung von Geräuschimmissionen. Die Grenzen der bisher verwendeten, operationellen Verfahren zeigen sich vor allem darin, dass der Einfluss der Atmosphäre auf die Schallausbreitung nur unzureichend berücksichtigt wird. In dieser Studie wird deshalb ein Modell aus dem Bereich der geometrischen Akustik zur Einbeziehung des Atmosphärenzustandes in die Schallprognose vorgestellt. Das Modell SMART (Sound propagation model of the atmosphere using ray-tracing) bestimmt die durch Schallstrahlenrefraktion modifizierten Schallausbreitungsbedingungen für ein Gebiet entsprechend der vorgegebenen thermischen Atmosphärenschichtung und den Vertikalprofilen von Windgeschwindigkeit und –richtung. Ein wichtiger Schritt bei der Weiterentwicklung von SMART war die Implementierung eines Refraktionsgesetzes, welches die Schallstrahlenbrechung an Schichtgrenzen in einem zweidimensional geschichteten, bewegten Medium exakt beschreibt. Die Unterschiede in der Schallstrahlenberechnung zwischen diesem Modell und früheren Simulationen machen sich insbesondere für Entfernungen von der Schallquelle zwischen 1 und 3 km bemerkbar. Da in diesem Bereich eine verstärkte Lärmbelastung gegenüber vorangegangenen Simulationen auftritt, wird die Verwendung des physikalisch exakten Refraktionsgesetzes für eine bewegte Atmosphäre im Rahmen von Lärmschutzuntersuchungen empfohlen. / An important problem regarding the environmental protection is the immission control of noise. The applicability of currently operational methods is limited because the influence of the atmosphere on the sound propagation is only insufficiently taken into account. Thus, a geometrical sound propagation model is presented in this study to include the state of the atmosphere into the forecast of noise immission. The model SMART (Sound propagation model of the atmosphere using ray-tracing) calculates the modified sound propagation conditions due to sound-ray refraction for an area according to the given thermal stratification of the atmosphere and the vertical profiles of wind speed and wind direction. An important step during the further development of the model SMART was the implementation of a refraction law, that is exactly valid for the sound-ray refraction at the boundary between two layers with different properties inside a twodimensional, stratified moving medium. Maximal differences between simulations with this model and former investigations occur at a distance of 1-3 km away from the sound source. A stronger noise immission is also notable in this area. Because of this result it is recommended to use the presented physically more exact refraction law for a moving atmosphere within the scope of noise immission control.
13

Verwendung der Simulationsergebnisse des Modells SMART

Balogh, Kati, Ziemann, Astrid, Wilsdorf, Michael, Viertel, René 05 April 2017 (has links) (PDF)
Das Schallstrahlenmodell SMART (Sound Propagation Model for the Atmosphere using Ray Tracing) simuliert die Schallausbreitung in der Atmosphäre unter der Berücksichtigung der Einflüsse der frequenzabhängigen Schallabsorption in der Luft, des frequenzabhängigen Bodeneinflusses und der Refraktion durch vertikale Gradienten im Wind- und Temperaturfeld. Die Ergebnisse des Modells werden zum Beispiel auf Truppenübungsplätzen zur Schallortung und zur Einschätzung der allgemeinen Schallausbreitungssituation verwendet. Des Weiteren wurde eine Untersuchung einer Regionalisierung von Schallausbreitungsverhältnissen durchgeführt. Daraus ergab sich eine Einteilung Deutschlands in verschiedene Gebiete mit unterschiedlichen mittleren Schallausbreitungsbedingungen. Die Schallquellenhöhe befand sich für diese Untersuchungen am Boden. SMART ist aber auch in der Lage die Schallausbreitung für weitaus höherliegende Schallquellen zu simulieren. So wurden Simulationen für die Emissionshöhe von 140 m durchgeführt. Es zeigten sich große Unterschiede zu einer bodennahen Schallausbreitung. / The sound propagation model SMART (Sound Propagation Model for the Atmosphere using Ray Tracing) simulates the sound propagation in a stratified atmosphere. In addition to the geometrical spreading and the stratification of the atmosphere, the properties of the ground also strongly affect the sound propagation. Further the absorption in the air is dependent for the frequency of the sound signal. The results of the model are used on drill grounds of the German Federal Armed Forces, on the one side for a locating of sound sources and on the other side for an estimation of the conditions of the sound propagation. Furthermore, there was a study to find regional differences in the model results. This leads to a classification of Germany in different areas with the same mean conditions for sound propagation. The sound source for this study was positioned at the ground surface. SMART also can be used for the simulation of a sound propagation with a high-placed sound source. So there was a study for an emission height of 140 meter. There were shown great differences to a sound propagation near the ground.
14

Sound Transmission Through A Fluctuating Ocean: A Modal Approach

Udovydchenkov, Ilya A. 21 December 2007 (has links)
Sound transmission through a fluctuating deep ocean environment is considered. It is assumed that the environment consists of a range-independent background, on which a small-scale perturbation, due for example to internal waves, is superimposed. The modal description of underwater sound propagation is used extensively. The temporal spread of modal group arrivals in weakly range-dependent deep ocean environments is considered. The phrase "modal group arrival" refers to the contribution to a transient wavefield corresponding to a fixed mode number. It is shown that there are three contributions to modal group time spreads which combine approximately in quadrature. These are the reciprocal bandwidth, a deterministic dispersive contribution, and a scattering-induced contribution. The latter two contributions are shown to be proportional to the waveguide invariant beta, a property of the background sound speed profile. The results presented are based mostly on asymptotic theory. Some extensions of the asymptotic modal theory are developed. These theoretical results are shown to agree well with full-wave numerical wavefield simulations and available exact mode theoretical results. Theoretical predictions of modal group time spreads are compared to estimates derived from data that was collected during the 2004 LOAPEX experiment. The effects of deficiencies in the receiving array on estimates of modal group time spreads are discussed. It is shown that in spite of array deficiencies in the LOAPEX measurements it is possible to estimate modal group time spreads for almost all propagating modes and these estimates agree well with results obtained from numerical simulations and the developed theory. The effect of ocean internal waves on sound speed fluctuations is also considered, motivated by the observation that the amount of energy being scattered along the propagation path is sometimes greater in the experimental data than predicted by numerical simulations and theory. It is shown that the usual assumption that the potential sound speed gradient is proportional to the squared buoyancy frequency is often not a good approximation.
15

Wind Turbine Sound Propagation in the Atmospheric Boundary Layer

Öhlund, Olof January 2014 (has links)
Wind turbines have grown both in size and number in the past decades. The taller turbines has made it possible to place them in forest areas which is fortunate for a country like Sweden with lots of forest. An issue with wind turbines is the sound they produce. The sound mainly comes from the rotor blades when they pass through the air. The sound heard some distance away from the turbine is sometimes masked by ambient background noise such as wind induced sound in the vegetation, but this is not always the case. Noise concerns among some people living in the vicinity of wind turbines are sometimes raised. Sound propagation models are used to predict the wind turbine sound level at certain distance. It is important that these models are accurate. Sound propagation is greatly influenced by the meteorological conditions. These conditions change over the day and year and vary a lot depending on the terrain conditions. In the past, large meteorological propagation effects have been found for sound sources close to the ground. Higher elevated sources like wind turbines have not been studied as much. One reason for this is that wind turbines are a relatively new sound source. In this thesis the meteorological influence on the wind turbine sound propagation is studied. Continuous simultaneous acoustic and meteorological measurements are performed at two different wind turbine sites during two years to capture all variations in the weather. The two sites are covered by forest, one is flat and the other has shifting terrain. The sites are representative for many locations in Sweden and around the world. The differences between the measured and expected wind turbine sound levels are established for different meteorological categories. The median of all deviations within each meteorological category is then compared. During no snow cover conditions the variation of the median under different meteorological conditions is 6 dBA and during snow cover the variation of the median is 14 dBA. The variations are due to the combined effect of refraction, ground conditions and terrain shape. The deviations from an expected value are seen for all octave bands from 63 Hz to 1000 Hz but are found to most distinct at low frequencies of around 125Hz. Meteorological effects starts to be important somewhere between 400 m and 1000 m from wind turbines.The characteristic "swish" sound from wind turbines are also studied in this thesis. The swish sound or as it is also called, the amplitude modulated sound, is found to be more common under some meteorological conditions such as temperature inversions and downwind conditions. A metric for detection of amplitude modulation duration and strength is proposed. Amplitude modulation, is according to some, the reason why wind turbine sound is perceived as more annoying than other typical environmental sounds at the same sound level. The swishes probably increase the probability to hear the wind turbine sound in presence of other background noise.
16

The sound speed and attenuation in loose and consolidated granular formulations of high alumina cements

Horoshenkov, Kirill V., Hughes, David C., Cwizen, A. January 2003 (has links)
No / Clinkers of high alumina cements are separated into three granular formulations with particle sizes in the range 0.6-0.71 mm, 0.71-1.18 mm and greater than 1.18 mm. These are used to manufacture consolidated samples of porous concrete in an autoclave. The acoustic and microscopic properties of loose and consolidated porous samples of concrete are investigated using both experimental methods and mathematical modelling. Values of porosity, flow resistivity, tortuosity and parameters of the pore size distribution are determined and used to predict closely the sound speed, acoustic attenuation and normal incidence absorption coefficient of these materials. It is shown that high alumina cements do not require additional binders for consolidation and that the structural bonds in these cements are developed quickly between individual clinkers in the presence of water. The hydration product build-up during the consolidation process is insignificant which ensures good acoustic performance of the consolidated samples resulting from a sufficient proportion of the open pores. The value of porosity in the consolidated samples was found to be around 40%, which is close to that measured in some commercial acoustic absorbers. This work provides a foundation for the development of acoustically efficient and structurally robust materials, which can be integrated in environmentally sustainable concrete and masonry structures.
17

Measured light vehicle noise reduction by hedges

Van Renterghem, T., Attenborough, K., Maennel, M., Defrance, J., Horoshenkov, Kirill V., Kang, J., Bashir, I., Taherzadeh, S., Altreuther, B., Khan, Amir, Smyrnova, Y., Yang, H-S. 25 October 2013 (has links)
no / The acoustical effects of hedges result from a combination of physical noise reduction and their influences on perception. This study investigates the physical noise reduction so as to enable estimation of its relative importance. Different in-situ methods have been used to measure noise shielding by hedges. These include a statistical pass-by experiment where the real insertion loss of a hedge could be measured, three controlled pass-by experiments using a reference microphone at close distance, and transmission loss measurements using a point source. Thick dense hedges are found to provide only a small total A-weighted light vehicle noise reduction at low speeds. Measured insertion losses range from 1.1 dBA to 3.6 dBA. The higher noise reductions are found to be associated with an increased ground effect.
18

Compact Integrated Active-Passive Approach for Axial Fan Noise Control

Homma, Kenji 07 October 2004 (has links)
A new active-passive approach for the control of noise radiated from a small axial fan was investigated. The approach involved the installation of an axial fan into a short duct with both passive and active noise control functions. First, a systematic methodology for the analytical modeling of finite-length ducts with multiple discontinuities was formulated. The procedure involved the modeling of a duct as a collection of simple duct sections, which were interconnected at multiple junctions. Analytical studies have shown that a short lined duct provides passive noise reduction effects through the mass-loading effect of the duct air volume at low frequencies and the sound absorption by a passive liner at high frequencies. It was also shown that active control can provide further noise attenuations at low-to-mid frequencies, thereby enhancing the overall noise control performance. Two alternate designs of active-passive noise control fan duct were considered. One was a simple non- segmented duct with a 2x2 active control and the other was an internally segmented duct with an 8x8 active control. It was indicated that the latter design possesses a significantly higher global noise control potential than the former with respect to both bandwidth and attenuation level. This was attributed to the reduction of the unwanted pressure contributions from the duct cross modes through the high frequency shifting of the associated cut-on frequencies. The experimental validation of the noise control approach was also carried out. An active-passive noise control fan duct incorporating the segmented duct design with 8x8 active control was constructed in conjunction with a hybrid feedforward-feedback control system. Experimental results have shown significant reductions in the total fan noise power associated with the first four BPF tones by the feedforward control and the broadband fan noise power by the feedback control. The overall active-passive noise control characteristics were observed to be in accordance with the analytical results. / Ph. D.
19

The Effect of Blade Aeroelasticity and Turbine Parameters on Wind Turbine Noise

Wu, Daniel 18 August 2017 (has links)
In recent years, the demand for wind energy has dramatically increased as well as the number and size of commercial wind turbines. These large turbines are loud and can cause annoyance to nearby communities. Therefore, the prediction of large wind turbine noise over long distances is critical. The wind turbine noise prediction is a very complex problem since it has to account for atmospheric conditions (wind and temperature), ground absorption, un-even terrain, turbine wake, and blade deformation. In these large turbines, the blade deflection is significant and it can potentially influence the noise emissions. However, the effects of blade flexibility on turbine noise predictions have not been addressed yet, i.e. all previous research efforts have assumed rigid blades. To address this shortcoming, the present work merges a wind turbine aeroelastic code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence) to a wind turbine noise code, WTNoise, to compute turbine noise accounting for blade aeroelasticity. Using the newly developed simulation tool, the effects flexible blades on wind turbine noise are investigated, as well as the effects of turbine parameters, e.g. wind conditions, rotor size, tilt, yaw, and pre-cone angles. The acoustic results are shown as long term average overall sound power level distribution over the rotor, ground noise map over a large flat terrain, and noise spectrum at selected locations downwind. To this end, two large wind turbines are modeled. The first one is the NREL 5MW turbine that has a rotor diameter of 126 m. The second wind turbine, the Sandia 13.2MW, has a rotor diameter of 206 m. The results show that the wind condition has strong effects on the noise propagation over long distances, primarily in the upwind direction. In general, the turbine parameters have no significant effects on the average noise level. However, the turbine yaw impacts significantly the turbine noise footprint by affecting the noise propagation paths. The rotor size is also a dominating factor in the turbine noise level. Finally, the blade aeroelasticity has minor effects on the turbine noise. In summary, a comprehensive tool for wind turbine noise prediction including blade aeroelasticity was developed and it was used to address its impact on modern large turbine noise emissions. / Master of Science
20

A Comprehensive Hamiltonian Atmospheric Sound Propagation Model for Prediction of Wind Turbine Noise

McBride, Sterling M. 06 December 2017 (has links)
Wind energy is the world´s fastest-growing renewable energy source. Thus, the amount of people exposed to wind farm noise is increasing. Due to its broadband amplitude modulated characteristic, wind turbine noise (WTN) is more annoying than noise produced by other common community/industrial sources. Aerodynamic noise along the blade span is the dominant noise source of modern large wind turbines. This type of noise propagates through the atmosphere in the proximity of wind farms. However, modelling and simulating WTN propagation over large distances is challenging due to the complexity of atmospheric conditions. Real temperature, wind velocity and relative humidity measurements typically show a characteristic nonlinear behavior. A comprehensive propagation model that addresses this problem while maintaining high accuracy and computational efficiency is necessary. A Hamiltonian Ray tracing (HRT) technique coupled to aerodynamically induced WTN is presented in this work. It incorporates acoustic wave refraction due to spatial speed of sound gradients, a full Doppler Effect formulation resulting from wind velocities in any arbitrary direction, proper acoustic energy dissipation during propagation, and ground reflection. The HRT method averts many of the setbacks presented by other common numerical approaches such as fast field program (FFP), parabolic equation methods (PE), and the standard Eikonal ray tracing (ERT) technique. In addition, it is not bounded to the linearity assumptions made for analytic propagation solutions. A wave phase tracking analysis through inhomogeneous and moving media is performed. Curved ray-paths are numerically computed by solving a non-linear system of coupled first order differential equations. Sound pressure levels through the propagation media are then calculated by using standard ray tubes and performing energy analysis along them. The ray model is validated by comparing a monopole’s ray path results against analytically obtained ones. Sound pressure level predictions are also validated against both FFP and ERT methods. Finally, results for a 5MW modern wind turbine over a flat acoustically soft terrain are provided. / Master of Science / Modelling propagation of noise produced by wind turbines over large distances is a challenging task. Real temperature distributions, flow characteristics around wind turbines, and relative humidity are some of the parameters that affect the behavior of the produced sound in the atmosphere. To this end, a Hamiltonian ray tracing tool that models the propagation of wind turbine noise has been developed and is the main focus of this thesis. This method avoids many of the limitations and inaccurate assumptions presented by other common numerical and analytical approaches. In addition, current commercial noise propagation codes are incapable of fully capturing the physical complexity of the problem. Finally, validation and simulation results for a wind turbine over flat terrain are presented in order to demonstrate the superior accuracy and computational efficiency of the Hamiltonian approach.

Page generated in 0.1263 seconds