• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Radiative Transfer Theory Applied to Ocean Bottom Modeling

Quijano, Jorge 01 January 2010 (has links)
Research on the propagation of acoustic waves in ocean bottom sediment is of interest for active sonar applications such as target detection and remote sensing. Currently, all seabed scattering models available in the literature are based on the full solution of the wave equation, which sometimes leads to mathematically intractable problems. In the electromagnetics community, an alternative formulation that overcomes some of this complexity is radiative transfer theory, which has established itself as an important technique for remote sensing. In this work, radiative transfer (RT) theory is proposed for the first time as a tool for the study of seabed acoustic scattering. The focus of this work is the development of a complete model for the interaction of acoustic energy with water-saturated sediments. The general geometry considered in this study consists of multiple elastic layers containing random distributions of inhomogeneities. The accuracy of the proposed model is assessed by rigorous experimental work, with data collected from random media in which acoustic properties such as the concentration and size of scatterers, background material, and the presence of elastic boundaries are controlled parameters. First, the ultrasound RT model is implemented for layers of finite thickness. The range of applicability of the proposed model is then illustrated using scaled experiments conducted at the Northwest Electromagnetics and Acoustics Research Laboratory (NEAR-Lab). Next, the model is applied to field data collected in a region with gassy sediments and compared to the formulation originally used to explain these data. Finally, insight into the emerging area of study of the time-dependent RT formulation is presented, and its role in the representation of finite broadband pulses is discussed.
12

RESONANCE AND ASYMPTOTIC SERIES BASED IDENTIFICATION OF AN ACOUSTICALLY RIGID SPHERE (SINGULARITY EXPANSION METHOD).

WEYKER, ROBERT RICHARD. January 1986 (has links)
Identification of the resonances and the local determination of the radius of curvature of an acoustically rigid sphere from simulated transient input-output data is presented. The scattering from the sphere is formulated using three techniques: the classic Mie-Lorenz series, the singularity expansion method (SEM), and the asymptotic series approximation. The Mie-Lorenz series is used to provide synthetic data. The SEM and the asymptotic series are used to develop two parametric inverse models. The scattered velocity potential is separated into three components: the reflection, the first creeping wave, and the second creeping wave. The effect of removing various components of the scattered potential on the resonance identification is shown, along with the effect of adding small amounts of noise. We find that the identification of a few resonances requires a relatively high order autoregressive, moving-average model. In addition, we show that removing the reflection from the synthetic output has only a small effect on the single or multiple output identified resonances. However, we find that changing the time origin, removing the second creeping wave, or adding small amounts of noise results in large errors in the identified resonances. We find that the radius of curvature can be accurately determined from synthetic data using the asymptotic series based identification. In addition, the identification is robust in the presence of noise, and requires only a low order asymptotic series model.
13

Wave propagation in a turbulent medium : second order effects.

Scott, Karen Ann January 1977 (has links)
Thesis. 1977. M.S.--Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERONAUTICS. / Includes bibliographical references. / M.S.
14

The statistics of finite bandwidth, modulated acoustic signals propagated to long ranges in the ocean, including multiple source effects.

Mikhalevsky, Peter Nicholas January 1979 (has links)
Thesis. 1979. Ph.D.--Massachusetts Institute of Technology. Dept. of Ocean Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Vita. / Includes bibliographical references. / Ph.D.
15

The determination of far-field backscatter using a near-field calibration array

Prasse, Brian Shawn 12 1900 (has links)
No description available.
16

The effect of hair on human sound localisation cues

Treeby, Bradley E. January 2007 (has links)
The acoustic scattering properties of the human head and torso match well with those of simple geometric shapes. Consequently, analytical scattering models can be utilised to account for the sound localisation cues introduced by these features. The traditional use of such models assumes that the head surface is completely rigid in nature. This thesis is concerned with modelling and understanding the effect of terminal scalp hair (i.e., a non-rigid head surface) on the auditory localisation cues. The head is modelled as a sphere, and the acoustical characteristics of hair are modelled using a locally-reactive equivalent impedance parameter. This allows the scattering boundary to be defined on the inner rigid surface of the head. The boundary assumptions are validated experimentally, through impedance measurement at oblique incidence and analysis of the near-field scattering pattern of a uniformly covered sphere. The impedance properties of human hair are also discussed, including trends with variations in sample thickness, bulk density, and fibre diameter. A general solution for the scattering of sound by a sphere with an arbitrarily distributed, locally reactive surface impedance is then presented. From this, an analytical solution is derived for a surface boundary that is evenly divided into two uniformly distributed hemispheres. For this boundary condition, cross-coupling is shown to exist between incoming and scattered wave modes of equi-order when the degrees are non-equal and opposite in parity. The overall effect of impedance on the resultant scattering characteristics is discussed in detail, both for uniform and for hemispherically divided surface boundaries. Finally, the analytical formulation and the impedance characteristics of hair are collectively utilised to investigate the effect of hair on human auditory localisation cues. The hair is shown to produce asymmetric perturbations to both the monaural and binaural cues. These asymmetries may help to resolve localisation confusions between sound stimuli positioned in the front and rear hemi-fields. The cue changes in the azimuth plane are characterised by two predominant features and remain consistent regardless of the decomposition baseline (i.e., the inclusion of a pinna offset, neck, etc). Experimental comparisons using a synthetic hair material show a good agreement with simulated results.
17

Sound propagation in urban spaces

Donavan, Paul Randall January 1976 (has links)
Thesis. 1976. Sc.D.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / Microfiche copy available in Archives and Engineering. / Vita. / Includes bibliographical references. / by Paul R. Donavan. / Sc.D.
18

A computer model to simulate suburban noise propagation

Busch-Vishniac, Ilene January 1978 (has links)
Thesis. 1978. M.S. cn--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / Includes bibliographical references. / by Ilene J. Busch-Vishniac. / M.S.cn
19

Active control of sound radiation due to subsonic wave scattering from discontinuities on thin elastic beams

Guigou, Catherine R. J. 06 June 2008 (has links)
Much progress has been made in recent years in active control of sound radiation from vibrating structures. Reduction of the far-field acoustic radiation can be obtained by directly modifying the response of the structure by applying structural inputs rather than by adding acoustic sources. Discontinuities, which are present in many structures are often important in terms of sound radiation due to wave scattering behavior at their location. In this thesis, an edge or boundary type discontinuity (clamped edge) and a point discontinuity (blocking mass) are analytically studied in terms of sound radiation. When subsonic vibrational waves impinge on these discontinuities, large scattered sound levels are radiated. Active control is then achieved by applying either control forces, which approximate shakers, or pairs of control moments, which approximate piezoelectric actuators, near the discontinuity. Active control of sound radiation from a simply-supported beam is also examined. For a single frequency, the flexural response of the beam subject to an incident wave or an input force (disturbance) and to control forces or control moments is expressed in terms of waves of both propagating and near-field types. The far-field radiated pressure is then evaluated in terms of the structural response, using Rayleigh's formula or a stationary phase approach, depending upon the application. The control force and control moment magnitudes are determined by optimizing a quadratic cost function, which is directly related to the control performance. On determining the optimal control complex amplitudes, these can be resubstituted in the constitutive equations for the system under study and the minimized radiated fields can be evaluated. High attenuation in radiated sound power and radiated acoustic pressure is found to be possible when one or two active control actuators are located near the discontinuity, as is shown to be mostly associated with local changes in beam response near the discontinuity.. The effect of the control actuators on the farfield radiated pressure, the wavenumber spectrum, the flexural displacement and the near-field time averaged intensity and pressure distributions are studied in order to further understand the control mechanisms. The influence of the near-field structural waves is investigated as well. Some experimental results are presented for comparison. / Ph. D.
20

Stochastic turning point problem

Kim, Jeong Hoon 20 October 2005 (has links)
A one-dimensional refractive, randomly-layered medium is considered in an acoustic context. A time harmonic plane wave emitted by a source is incident upon it and generates totally reflected fields which consist of "signal" and "noise". The statistical properties, i.e., mean and correlation functions, of these fields are to be obtained. The variations of the medium structure are assumed to have two spatial scales; microscopic random fluctuations are superposed upon slowly varying macroscopic variations. With an intermediate scale of the wavelength, the interplay of total internal reflection (geometrical acoustics) and random multiple scattering (localization phenomena) is analyzed for the turning point problem. The problem, in particular, above the turning point is formulated in terms of a transition scale. Two limit theorems for stochastic differential equations with multiple spatial scales, called Theorem 1 and Theorem 2, are derived. They are applied to the stochastic initial value problems for reflection coefficients in the regions above and below the turning point, respectively. Theorem 1 is an extension of a limit theorem on O( 1) scaled interval to infinite scale and provides uniformly-valid approximate statistics for random multiple scattering in the region above the turning point (transition as well as outer regions). Theorem 2 deals with stochastic problems with a rapidly varying deterministic component and approximates the reflection process in the region below the turning point which is characterized by the random noise. Finally, the evolution of the reflection coefficient statistics in the whole region is described by combining the two results as a product of a transformation at the turning point and two evolution operators corresponding to the two regions. / Ph. D.

Page generated in 0.0853 seconds