• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inversion of horizontal loop electromagnetic soundings over a stratified earth

Fullagar, Peter Kelsham January 1981 (has links)
A detailed study of electromagnetic induction in a sequence of conductive layers has been completed for the case when the inducing fields are generated by an alternating current in a horizontal loop. The study was undertaken with a view to the development of a computer program to perform automatic inversion of horizontal loop electromagnetic (HLEM) frequency soundings taken over horizontally stratified ground. The program constitutes a new implementation of the general approach of Backus and Gilbert (1967, 1968, 1970). By means of a linearised iterative scheme, it constructs layered conductivities which satisfy a given set of observations to an accuracy consistent with the observational uncertainties. Subsequently, the non-uniqueness admitted by the limited amount of data can be appraised by computing averages of the original constructed model and comparing them with averages corresponding to other dissimilar models which also satisfy the data. In examples the Backus-Gilbert averages faithfully reflect the character of the "true" conductivity in regions of high conductivity, but they are of limited value in delineating resistive zones. The program has been applied successfully to the inversion of real data from Grass Valley, Nevada. A uniqueness theorem is presented for inversion of HLEM frequency soundings. It has been proved that an unlimited quantity of perfectly accurate HLEM frequency soundings (at a fixed receiver location) suffices to completely determine the conductivity as a function of depth. This result, which is believed to be new, enhances the credibility of conclusions based on inversion of HLEM soundings. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
2

Use of matched filters to form an additive array in electromagnetic sounding

Skibicky, Taras V. January 1982 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1982. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 46-47).
3

The spatial and temporal variation of sound speed in the California Current system off Monterey, California

Hughes, John George. January 1975 (has links)
Thesis (M.S.)--Naval Postgraduate School, 1975. / Includes bibliographical references (leaves 105-106).
4

Matched field processing based geo-acoustic inversion in shallow water

Wan, Lin 15 November 2010 (has links)
Shallow water acoustics is one of the most challenging areas of underwater acoustics; it deals with strong sea bottom and surface interactions, multipath propagation, and it often involves complex variability in the water column. The sea bottom is the dominant environmental influence in shallow water. An accurate solution to the Helmholtz equation in a shallow water waveguide requires accurate seabed acoustic parameters (including seabed sound speed and attenuation) to define the bottom boundary condition. Direct measurement of these bottom acoustic parameters is excessively time consuming, expensive, and spatially limited. Thus, inverted geo-acoustic parameters from acoustic field measurements are desirable. Because of the lack of convincing experimental data, the frequency dependence of attenuation in sandy bottoms at low frequencies is still an open question in the ocean acoustics community. In this thesis, geo-acoustic parameters are inverted by matching different characteristics of a measured sound field with those of a simulated sound field. The inverted seabed acoustic parameters are obtained from long range broadband acoustic measurements in the Yellow Sea '96 experiment and the Shallow Water '06 experiment using the data-derived mode shape, measured modal attenuation coefficients, measured modal arrival times, measured modal amplitude ratios, measured spatial coherence, and transmission loss data. These inverted results can be used to test the validity of many seabed geo-acoustic models (including Hamilton model and Biot-Stoll model) in sandy bottoms at low frequencies. Based on the experimental results in this thesis, the non-linear frequency dependence of seabed effective attenuation is justified.

Page generated in 0.1371 seconds