Spelling suggestions: "subject:"cources extragalactique"" "subject:"cources extragalactic""
1 |
Rayonnement cosmique : révèler la matière noire au-delà des sources astrophysiques / Cosmic radiation : unveiling dark matter components beyond the contribution of astrophysical sourcesDi Mauro, Mattia 27 February 2015 (has links)
Les preuves d'une composante de matière invisible dans l'Univers sont présents à de nombreuses échelles. Cette composante, appelée matière noire (MN), à interaction faible, stable sur des temps cosmologiques, non-relativiste et non-baryonique représente environ 28% du budget d' énergie de l'Univers. L' une des principales stratégies pour identifier la MN est la détection indirecte des produits de son annihilation.Les rayons gamma sont très prometteurs. Le télescope spatiale Fermi-LAT (FL) a mesuré un flux diffus isotrope de gamma, nommé IGRB, qui est généralement associé à l'émission de sources non résolues, mais peut aussi contenir une contribution due à la MN. Les sources gamma les plus nombreuses sont les noyaux actifs de galaxies (NAG) divisés en blazars et NAG non-alignés (NAGna) selon l'orientation de leur jet. Nous avons calculé le flux gamma des NAGna à l'aide de la corrélation entre luminosité radio et gamma pour un échantillon de sources détectées dans les deux bandes. Nous avons ainsi démontré que les très nombreux NAGna peuvent contribuer de 10% à 100% du IGRB mesuré par FL.Nous avons étudié les blazars et, pour la première fois, nous avons utilisé les données de FL et des télescopes TeV au sol en synergie pour dériver leur fonction de luminosité et leur distribution spectrale d'énergie. Nous avons démontré que cette population représente environ 10% du IGRB à 100MeV, jusqu'à sa totalité à des énergies plus élevées, expliquant en détail le ramollissement de l'émission IGRB aux énergies supérieures à 100GeV.Les pulsars sont les sources galactiques le plus nombreuses de gamma et radio. Nous avons calculé que leur contribution maximale au IGRB est de 1% et qu' elles contribuent à hauteur de 8% à l' excès au centre galactique. Compte tenu des résultats précédents, nous avons déduit que l'émission des NAG et des galaxies à sursaut de formation d'étoiles peut expliquer très bien et au même temps l'anisotropie et l'intensité du IGRB. Nous avons calculé les limites supérieures à la section efficace d' annihilation de MN, si on rajoute ce mécanisme d'émission aux contributions astrophysiques. Ces limites sont très strictes, autour de la valeur thermique canonique, pour une large gamme de masses de MN. Nous avons également identifié des régions dans l' espace des paramètres masse MN-section efficace d' annihilation peut améliorer l'ajustement aux données.Les flux de positons (e+) et électrons (e-) pourraient eux aussi cacher un signal de MN. La fraction de e+ (FP) devrait diminuer avec l' énergie si le mécanisme principal de production de e+ était secondaire, à savoir dû à l'interaction des rayons cosmiques avec le milieu interstellaire. Cependant AMS-02 mesure une augmentation de la FP aux énergies supérieures à 10 GeV. Nous avons calculé l'émission de e+ et de e- de rémanent de Supernovae, de nébuleuse de vent de pulsars (NVP) et de production secondaire, montrant que les flux leptoniques peuvent être entièrement expliquée par ces émissions astrophysiques et que la hausse de la FP est compatible avec une émission de paires par les NVP.Enfin, nous avons construit une section efficace phénoménologique pour la production secondaire d'antiprotons, en utilisant les données existantes. Nous avons dérivé que l'incertitude sur la production d'antiprotons totale est d' au moins 20%. Ainsi, à moins que les incertitudes soient réduites grâce à de nouvelles mesures, il sera difficile de dévoiler une contribution de MN au flux d' antiprotons au-delà de la production secondaire avec les prochaines données de AMS-02, à moins que le composant de MN soit dominante dans une certaine gamme d'énergie.Les prochaines années seront très excitantes pour la chasse à la MN: de nouvelles mesures gamma et de particules chargées vont atteindre une précision incroyable; un grand effort devrait être fait dans la modélisation de l' émission de ces flux par des sources astrophysiques afin de démêler un signal de MN des inévitables bruits de fonds / Evidences of an invisible matter component in the Universe are present at many scales. This component, called dark matter (DM), is weakly interacting, stable on cosmological scales, non-relativistic, not made of baryonic particles and costitutes about the 28% of the Universe. One of the main strategies to identify DM is the indirect detection of particles produced via DM annihilation. gamma rays are one of the most promising channels. The Fermi-LAT has measured an isotropic gamma-ray backgound (IGRB) which is associated to the emission from unresolved sources, but could also contain an exotic component from DM. The most numerous gamma-ray sources are the Active Galactic Nuclei (AGN) divided in blazars and misaligned AGN (MAGN) according to the orientation of their jet. We have derived the gamma-ray emission from MAGN using the correlation between the radio and gamma-ray luminosities of a sample of detected sources. The unresolved MAGN are very numerous and we have demonstrated that they can account from 10% up to 100% of the IGRB measured by the Fermi-LAT.We have also studied the blazars and, for the first time, we used the Fermi-LAT data and the IACTs measure- ments in synergy to have a better understanding of their spectral energy distribution (SED). Considering these sets of catalogs, we have derived their SED and gamma-ray luminosity function demonstrating that this population accounts for about 10% of the IGRB at 100 MeV up to its totality at higher energies, fully explaining the softening of the IGRB emission at energy larger than 100 GeV.The most numerous Galactic gamma-ray and radio emitting population is the pulsar class. We have calculated that the maximal contribution of pulsars to the IGRB is 1% and that they contribute up to 8% to the putative gamma-ray excess found in the Galactic center.Using the previous results we have derived that the emission from AGN and Star Forming Galax- ies can provide very good fits to the anisotropy and intensity of the Fermi-LAT IGRB. We have also calculated upper limits to the annihilation cross section of DM adding this exotic emission mechanism to the astrophysical source populations. These limits are quite stringent, around the canonical thermal relic value for a wide range of DM masses. We have also identified regions in the DM mass and annihilation cross section parameter space which can significantly improve the fit to data.Positrons and electrons spectra could also hide a DM signal. The positron fraction (PF) is expected to have a decreasing shape if the main mechanism of positron production is ”secondary”, namely due to the interaction of cosmic rays with the interstellar medium. However AMS-02 measured an increased PF at energy larger than 10 GeV. We have calculated the electron and positron emission from Supernovae Remnants, Pulsar Wind Nebulae and secondary production showing that the electron, positron, PF and the inclusive spectra can be fully explained by these astrophysical emissions and that the rising of the PF is consistent with the Pulsar Wind Nebulae emission of positrons.Finally we have built a phenomenological cross section for the secondary production of antiprotons. We have used the most up-to-date data sets and derived that the uncertainty on the total antiproton production is at least 20%. Thus, unless cross section uncertainties will be reduced thanks to new measurements, it will be difficult to unveil a DM contribution to antiprotons above the secondary production with the upcoming AMS-02 antiproton data, unless the DM component is really dominant in some energy range.The next years will be exciting for the hunting of DM. New measurements on gamma-rays and charged parti- cles are going to reach incredible precision and a strong effort should be done in the modeling of the gamma-ray and charged particles emission from galactic and extragalactic sources in order to disentangle a signal of DM above this unavoidable astrophysical background
|
2 |
Modelling Dust Processing and Evolution in Extreme Environments as seen by Herschel Space Observatory / Modélisation de processus qui agissent sur la poussière et de son évolution dans les régions extrêmes comme observé pas Herschel Space ObservatoryBocchio, Marco 16 September 2014 (has links)
L'objectif principal de mon travail de thèse est de comprendre les processus qui agissent sur la poussière pendant le couplage entre le milieu interstellaire galactique et le milieu intra-amas. Ce processus est d'intérêt particulier dans les phénomènes violents comme les interactions galaxie-galaxie ou le "Ram Pressure Stripping" causé par la chute d'une galaxie vers le centre de l'amas.Initialement, je me suis concentré sur le problème de la destruction de la poussière et le processus de chauffage, en re-visitant les modèles présents en littérature. J'ai particulièrement insisté sur les cas des environnements extrêmes comme le gaz chaud de type coronale (e.g., IGM, ICM, HIM) et les chocs interstellaires générés par les supernovae. Sous ces conditions les petits grains sont détruits rapidement et les gros grains sont chauffés par les collisions avec les électrons énergétiques, en rendent la distribution spectral d'énergie de la poussière très différente de ce qu'on observe dans le milieu interstellaire diffus.Pour tester nos modèles j'ai les appliqués au cas d'une galaxie en interaction, NGC 4438. Les données Herschel de cette galaxie indiquent la présence de la poussière avec une température plus élevée de ce qu'on s'attendait.Avec une analyse à plusieurs longueurs d'onde on montre que cette poussière chaude semble être dans un gaz ionisé et chaud et donc subir à la fois le chauffage collisionnel et la destruction des petits grains.De plus, je me suis focalisé sur l'énigme de longue date à propos de la différence entre les échelles de temps de destruction et formation de la poussière dans la Voie Lactée. Basées sur l'efficacité de destruction de la poussière dans les chocs interstellaires, les estimations précédentes portent à une durée de vie de la poussière plus courte que l'échelle de temps typique de sa formation dans les étoiles AGB. En utilisant un modèle de poussière récent et les dernières estimations pour l'évolution de la poussière, on a réévalué la durée de vie de la poussière dans notre Galaxie. Finalement, j'ai tourné mon attention au phénomène de "Ram Pressure Stripping''. La galaxie ESO 137-001 représente un des meilleurs cas pour étudier cet effet. Sa longue queue H2 intégrée dans une queue de gaz chaud et ionisé soulève des questions sur son possible arrachement de la galaxie ou sa formation en aval dans la queue. Basé sur des récentes simulations numériques, j'ai montré que la formation des molécules de H2 sur la surface des grains dans la queue est un scénario viable. / The main goal of my PhD study is to understand the dust processing that occurs during the mixing between the galactic interstellar medium and the intracluster medium. This process is of particular interest in violent phenomena such as galaxy-galaxy interactions or the "Ram Pressure Stripping'' due to the infalling of a galaxy towards the cluster centre.Initially, I focus my attention to the problem of dust destruction and heating processes, re-visiting the available models in literature. I particularly stress on the cases of extreme environments such as a hot coronal-type gas (e.g., IGM, ICM, HIM) and supernova-generated interstellar shocks. Under these conditions small grains are destroyed on short timescales and large grains are heated by the collisions with fast electrons making the dust spectral energy distribution very different from what observed in the diffuse ISM.In order to test our models I apply them to the case of an interacting galaxy, NGC 4438. Herschel data of this galaxy indicates the presence of dust with a higher-than-expected temperature.With a multi-wavelength analysis on a pixel-by-pixel basis we show that this hot dust seems to be embedded in a hot ionised gas therefore undergoing both collisional heating and small grain destruction.Furthermore, I focus on the long-standing conundrum about the dust destruction and dust formation timescales in the Milky Way. Based on the destruction efficiency in interstellar shocks, previous estimates led to a dust lifetime shorter than the typical timescale for dust formation in AGB stars. Using a recent dust model and an updated dust processing model we re-evaluate the dust lifetime in our Galaxy. Finally, I turn my attention to the phenomenon of "Ram Pressure Stripping''. The galaxy ESO 137-001 represents one of the best cases to study this effect. Its long H2 tail embedded in a hot and ionised tail raises questions about its possible stripping from the galaxy or formation downstream in the tail. Based on recent hydrodynamical numerical simulations, I show that the formation of H2 molecules on the surface of dust grains in the tail is a viable scenario.
|
Page generated in 0.0528 seconds