• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Surface modification of coal fly ash by sodium lauryl sulphate

Mathebula, Confidence Lethabo 22 May 2013 (has links)
Thirty million tons of coal fly ash are produced each year in South Africa of which approximately 5% is utilised beneficially. With the growing concern about pollution and increasing landfill costs, the study of the utilisation and application of coal fly ash has increased worldwide. The morphology and particle size of fly ash make it suitable for application as filler in polymers, but its application is hindered by the lack of compatibility between the inorganic surface of the ash and the organic matrix of the polymer. Another concern is the agglomeration between fly ash particles. For this reasons, surface treatment is usually performed on mineral fillers to enhance workability and compatibility between the polymer and filler. This study involved the surface modification of South African coal fly ash with an anionic surfactant, sodium lauryl sulphate (SLS), under different treatment conditions. Surface and physical properties of the untreated and treated fly ash were studied systematically by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to determine the extent of interaction between the SLS and the fly ash surface. Other analytical techniques applied include Thermogravimetric analysis (TGA-FTIR), Particle size distribution, X-ray diffraction (XRD) and X-ray fluorescence spectroscopy (XRF), Raman spectroscopy and Fourier Transform Infrared spectroscopy FTIR). Although the overall chemical composition of the SLS modified coal fly ash investigated in this study was not altered extensively, significant changes could be observed in its physical properties. The hydrophilic surface of untreated fly ash was rendered hydrophobic after SLS treatment. SEM results indicated a decrease in agglomeration between fly ash spheres upon surfactant treatment, while results obtained from TEM have shown agglomerates on the surface of most of the fly ash spheres. There is a distinct difference between the morphology of agglomerates on the untreated and SLS modified fly ash, and also between samples treated under different conditions. Not all SLS modified fly ash particles were covered with agglomerates to the same degree. Results obtained from FTIR and TGA-FTIR studies were promising in the sense that hydrocarbon fractions could be observed in the TGA-FTIR decomposition products. The possibility of interactions between fly ash and SLS could be deduced from the FTIR results of the solid samples, due to a small shift in peak positions of the S-O stretch vibration, which may be indicative of electrostatic interactions rather than bonding interactions between SLS and fly ash. The presence of SLS could not be confirmed by Raman spectroscopy, but rendered information about the spatial distribution of the various phases in the fly ash. Feasibility tests were performed on the application of fly ash samples as filler in PVC. These results indicate that SLS treated fly ash can successfully replace CaCO3 as filler in PVC under conditions of low filler loadings / Dissertation (MSc)--University of Pretoria, 2013. / Chemistry / unrestricted

Page generated in 0.1044 seconds