• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Soil incorporation and application rate of six dinitroaniline herbicides for shattercane (Sorghum bicolor (L.) Moench) control in soybeans (Glycine max (L.) Merrill)

Kugler, Jeffrey L January 2011 (has links)
Digitized by Kansas Correctional Industries
2

Response of soybean (Glycine max (L.) Merrill) to postemergence grass control herbicides and volunteer corn (Zea mays L.) and volunteer wheat (Triticum aestivum L.) control

Chairez, Felix Ayala January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
3

Field and laboratory investigations on the efficacy, selectivity, and action of the herbicide clomazone

Vencill, William K. January 1988 (has links)
Clomazone is a recently introduced herbicide for the selective control of grass and broadleaf weeds in soybeans. Field studies were conducted in full-season no-till soybeans to determine the efficacy of clomazone as a preplant and preemergence herbicide. Clomazone applied preemergence provided large crabgrass (Digitaria sanguinalis L.) control equivalent to that of oryzalin applied preplant or preemergence and provided better control of several broadleaf weeds. Control from preplant applications of clomazone was not adequate. Preemergence and preplant incorporated applications of clomazone were compared in conventionally-tilled soybeans. Clomazone efficacy at two depths of incorporation was also investigated. Clomazone applied preemergence generally provided control of large crabgrass and several broadleaf weed species equivalent to preplant incorporated applications. The addition of imazaquin or chlorimuron plus linuron improved smooth pigweed (Amaranthus hybridus L.) control over that provided by clomazone alone. These combinations generally did not improve large crabgrass, jimsonweed (Datura stramonium L.), and common lambsquarters (Chenopodium album L.) control over that of clomazone alone. Shallow incorporation (4 cm) of clomazone provided better weed control than deep incorporations (8 cm). Studies were conducted to evaluate efficacy and to quantify volatilization of three clomazone formulations (emulsifiable concentrate, wettable powder, and a microencapsulated formulation) following soil application. Samples were collected at the first, second, and tenth day after clomazone application. The three clomazone formulations provided control of large crabgrass. Clomazone volatilization was greatest 24 h after application from the emulsifiable concentrate and wettable powder formulations and declined at the second and tenth day after application. Volatilization from the microencapsulated formulation was lower than the other two formulations at all sampling times. Clomazone volatilization was greater from preemergence than preplant incorporated applications. Differential selectivity studies were initiated to determine the absorption, translocation, and metabolism of clomazone in tolerant soybean and smooth pigweed and susceptible redroot pigweed and livid amaranth exposed to foliar and root applied clomazone. Redroot pigweed and livid amaranth absorbed more clomazone through the roots than soybean and smooth pigweed. Absorption of foliar-applied clomazone was limited in all species. Of the clomazone absorbed in all species, most was translocated to the leaf tissue. Two metabolites of clomazone were found. One was determined to be a GS-clomazone conjugate. Differences in clomazone metabolism among species examined were not found. Growth and physiological responses of a normal hybrid ('DeKalb XL67'), a dwarf mutant, and an albino mutant of corn (Zea mays L.) to clomazone and interactions of gibberellin with clomazone on normal corn were examined. The dwarf mutant displayed greater tolerance to clomazone than normal corn. Growth measurements suggested that gibberellin was antagonistic with clomazone. / Ph. D.
4

Effect of selected postemergence herbicides on growth, nodulation, and nitrogen fixation of soybeans (Glycine max)

Chaudhry, Ozair Ahmad. January 1983 (has links)
Call number: LD2668 .T4 1983 C43 / Master of Science
5

Velvetleaf (Abutilon theophrasti) response to chloramben applied postemergent

Orr, Wendel Byron. January 1985 (has links)
Call number: LD2668 .T4 1985 O77 / Master of Science
6

Weed response to weed control, tillage and nutrient source in a corn-soybean rotation

Perron, France. January 1998 (has links)
Mechanical weed control, chisel plow tillage and organic fertilization are important components of sustainable agriculture that can contribute to the preservation and improvement of soil and water resources. These practices can each affect weed communities, crop weed interactions and crop yields. Little is known about their combined effects on weed populations and weed community dynamics in common cropping systems. The main objective of this project was to determine the effects of crop rotation, weed control, tillage and nutrient source and their interactions on weed communities and weed emergence. The field experiment was conducted on a Sainte-Rosalie clay and a Duravin loam in Saint-Hyacinthe, Quebec, Canada, in 1996 and 1997. Mechanical control was not as effective as chemical control in controlling weed populations. Weed density increased after the second pass of the rotary hoe in soybean. Cultivation in corn triggered flushes of weed emergence, but corn yield was not affected by the increase in weed density. Chisel plow tillage reduced the efficacy of mechanical weed control in both crops. Reduced soybean yields were partly attributed to the large quantities of corn residues under chisel plow tillage. Nutrient source had no effect on weed densities. However, environmental stress conditions experienced in spring 1997 resulted in reduced crop growth and increased weed biomass under organic fertilization. Seed production of dominant residual weed species was greater under mechanical compared with chemical weed control, but was unaffected by tillage and nutrient source. Particular attention to weed management will be required when including both chisel plow tillage and organic nutrient source in a corn-soybean rotation, especially when resorting to mechanical weed control only.
7

Weed response to weed control, tillage and nutrient source in a corn-soybean rotation

Perron, France. January 1998 (has links)
No description available.
8

Hyper-spectral remote sensing for weed and nitrogen stress detection

Goel, Pradeep Kumar January 2003 (has links)
This study investigated the possibility of using data, acquired from airborne multi-spectral or hyper-spectral sensors, to detect nitrogen status and presence of weeds in crops; with the ultimate aim of contributing towards the development of a decision support system for precision crop management (PCM). / A 24-waveband (spectrum range 475 to 910 nm) multi-spectral sensor was used to detect weeds in corn (Zea mays L.) and soybean ( Glycine max (L.) Merr.) in 1999. Analysis of variance (ANOVA), followed by Scheffe's test, were used to determine which wavebands displayed significant differences in aerial spectral data due to weed treatments. It was found that the radiance values were mainly indicative of the contribution of weeds to the total vegetation cover in various plots, rather than indicative of changes in radiance of the crops themselves, or of differences in radiance between the weed populations and the crop species. / In the year 2000, a 72-waveband (spectrum range 407 to 949 nm) hyperspectral sensor was used to detect weeds in corn gown at three nitrogen levels (60, 120 and 250 kg N/ha). The weed treatments were: no control of weeds, control of grasses, control of broadleaved weeds and control of all weeds. Imagery was acquired at the early growth, tassel, and fully-mature stages of corn. Hyper-spectral measurements were also taken with a 512-waveband field spectroradiometer (spectrum range 270 to 1072 nm). Measurements were also carried out on crop physiological and associated parameters. ANOVA and contrast analyses indicated that there were significant (alpha = 0.05) differences in reflectance at certain wavebands, due to weed control strategies and nitrogen application rates. Weed controls were best distinguished at tassel stage. Nitrogen levels were most closely related to reflectance, at 498 nm and 671 nm, in the aerial data set. Differences in other wavebands, whether related to nitrogen or weeds, appeared to be dependent on the growth stage. Better results were obtained from aerial than ground-based spectral data. / Regression models, representing crop biophysical parameters and yield in terms of reflectance, at one or more wavebands, were developed using the maximum r2 criterion. The coefficients of determination (r 2) were generally greater than 0.7 when models were based on spectral data obtained at the tassel stage. Models based on normalized difference vegetation indices (NDVI) were more reliable at estimating the validation data sets than were the reflectance models. The wavebands at 701 nm and 839 nm were the most prevalent in these models. / Decision trees, artificial neural networks (ANNs), and seven other classifiers were used to classify spectral data into the weed and nitrogen treatment categories. Success rates for validation data were lower than 68% (mediocre) when training was done for all treatment categories, but good to excellent (up to 99% success) for classification into levels of one or the other treatment (i.e. weed or nitrogen) and also classification into pairs of levels within one treatment. Not one classifier was determined best for all situations. / The results of the study suggested that spectral data acquired from airborne platforms can provide vital information on weed presence and nitrogen levels in cornfields, which might then be used effectively in the development of PCM systems.
9

Hyper-spectral remote sensing for weed and nitrogen stress detection

Goel, Pradeep Kumar January 2003 (has links)
No description available.

Page generated in 0.6638 seconds