• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The contribution of earthworm communities to nitrogen cycling in agroecosystems of Québec /

Eriksen-Hamel, Nikita S. January 2007 (has links)
No description available.
2

Bradyrhizobium japonicum strains and mutants allow improved soybean nodulation, nitrogen fixation and yield in a short season (cool spring) area

Zhang, Hao, 1963- January 2001 (has links)
In the soybean nitrogen fixing symbiosis, suboptimal root zone temperatures (RZTs) inhibit the inception and development of nodules, leading to reduced nitrogen fixation and soybean yield. The purpose of this thesis was to evaluate the effects of selected with potential low temperature tolerant strains, originating from the northern areas of the USA, and mutants made from Bradyrhizobium japonicum USDA 110, on soybean nodulation, nitrogen fixation and yield in a short season area with cool spring conditions. Among the 40 B. japonicum strains evaluated, only USDA 30, USDA 31, 532 C and USDA 110 grew well at 15°C. USDA 30 and USDA 31 grew better than 532 C and USDA 110 at 15°C. Mutants Bj 30050--Bj 30059 could not produce lipo-chito-oligosaccharide (LCO) at measurable levels in the absence of genistein. All mutants produced more LCOs than 532 C and USDA 110 at the same temperature and genistein concentration. Temperature and genistein concentration did not affect LCO production dynamics for the following: mutant Bj 30055, 532 C and USDA 110. Both mutant production and identification of low temperature tolerant strains achieved the general objective of improved soybean nitrogen fixation in a cool climate. Inoculation with low temperature tolerant strains (USDA 30, USDA31), or mutants (Bj 30055 and Bj 30058) improved soybean development (increases in leaf area and shoot nitrogen content), nodulation (increases in nodule number and nodule weight), nitrogen fixation and yield relative to inoculation with B. japonicum strain 532 C, the strain currently included in most Canadian soybean inocula.
3

The contribution of earthworm communities to nitrogen cycling in agroecosystems of Québec /

Eriksen-Hamel, Nikita S. January 2007 (has links)
Earthworms have an important role in the decomposition of organic matter, mineralization of nutrients and physical mixing of soils. Despite a large number of laboratory and greenhouse-level studies investigating how earthworms modify soil properties and promote soil fertility, we lack reliable methods to scale-up and quantify earthworm contributions to nutrient cycling at the agroecosystem level. The objective of this thesis is to determine the influence of earthworm communities on nitrogen (N) transformations in soils and to quantify their contribution to nitrogen flux through soils for soybean and maize cropping systems of Quebec. Laboratory growth rates were used to predict how earthworm growth responded to seasonal fluctuations in soil temperature and moisture. The relationships between earthworm populations, soil-N pools and annual crop production were evaluated in a field experiment. When favourable conditions occurred in 2004 (temperatures <20°C, and rainfall at least once a week), a positive relationship was found between earthworm numbers and the plant available-N, including soil mineral-N, microbial biomass-N and total-N removed in soybean grain. In 2005, soil conditions were unfavourable (temperatures > 20°C and little or no rainfall) to earthworm survival and growth, and no relationship was found between earthworm populations, soil N pools and corn production. These data permitted me to make assumptions about earthworm activity and life histories under field conditions, which were used to estimate N flux through earthworm communities with two models. The models were tested for their sensitivity to varying parameter values within the range reported in the scientific literature. During a crop growing period with favourable climate conditions, a large earthworm population (100 g fresh weight biomass m-2 or greater) is predicted to cycle as much as 120 kg N ha-1. Model predictions were very sensitive to input parameters and did not correspond to the partial N budget calculated at the site. Accurate predictions of N mineralization by earthworms require more species- and site-specific parameter values. Further investigation using stable 15N isotopes as tracers would help us to follow the N transformations and evaluate the N flux mediated by earthworms at the field scale.
4

Bradyrhizobium japonicum strains and mutants allow improved soybean nodulation, nitrogen fixation and yield in a short season (cool spring) area

Zhang, Hao, 1963- January 2001 (has links)
No description available.

Page generated in 0.0508 seconds