• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization and functional studies of GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency.

January 2005 (has links)
by Li Wing Yen Francisca. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 94-105). / Abstracts in English and Chinese. / Thesis committee --- p.i / Statement --- p.ii / Abstract --- p.iii / Chinese Abstract --- p.v / Acknowledgemnets --- p.vii / Abbreviations --- p.ix / Table of contents --- p.xii / List of figures --- p.xvi / List of tables --- p.xvii / Chapter 1. --- General Introduction / Chapter 1.1 --- Introduction to oxidative stress / Chapter 1.1.1 --- Introduction to Reactive Oxygen Species --- p.1 / Chapter 1.1.2 --- Major sites of ROS production / Chapter 1.1.2.1 --- Chloroplast --- p.4 / Chapter 1.1.2.2 --- Mitochondria --- p.4 / Chapter 1.2 --- Regulation of intercellular ROS content in plant cells / Chapter 1.2.1 --- Enzymatic defense ofROS --- p.6 / Chapter 1.2.1.1 --- Superoxide dismutases --- p.6 / Chapter 1.2.1.2 --- "Ascorbate peroxidase, Glutathione reductase and the Ascorbate-Glutathione cycle" --- p.7 / Chapter 1.2.1.3 --- Catalase --- p.11 / Chapter 1.2.1.4 --- Alternative oxidase --- p.11 / Chapter 1.2.2 --- Non-enzymatic / Chapter 1.2.2.1 --- Ascorbate and Glutathione --- p.12 / Chapter 1.2.2.2 --- α-tocopherol --- p.12 / Chapter 1.3 --- "Salt, dehydration and oxidative stress" / Chapter 1.3.1 --- Oxidative stress is induced when plants were under salt stress --- p.13 / Chapter 1.3.2 --- Oxidative stress is induced when plants were under dehydration stress --- p.14 / Chapter 1.4 --- ROS scavenging: the road to achieve multiple-stress tolerance? --- p.16 / Chapter 1.5 --- Purple acid phosphatase and its relationship with oxidative stress in plants / Chapter 1.5.1 --- General introduction to plants purple acid phosphatase (PAP) --- p.20 / Chapter 1.5.2 --- Purple acid phosphatases that found to be involved in ROS scavenging in plants --- p.21 / Chapter 1.6 --- Previous studies in GmPAP3 --- p.23 / Chapter 1.7 --- Hypothesis and significance of this project --- p.25 / Chapter 2. --- Materials and methods / Chapter 2.1 --- Materials / Chapter 2.1.1 --- "Plants, bacterial strains and vectors." --- p.26 / Chapter 2.1.2 --- Chemicals and reagents --- p.27 / Chapter 2.1.3 --- Commercial kits --- p.28 / Chapter 2.1.4 --- Primers and adaptors --- p.29 / Chapter 2.1.5 --- Equipments and facilities used --- p.31 / Chapter 2.1.6 --- "Buffer, solution, gel and medium" --- p.31 / Chapter 2.1.7 --- Software --- p.31 / Chapter 2.2 --- Methods / Chapter 2.2.1 --- Molecular techniques / Chapter 2.2.1.1 --- Bacterial cultures for recombinant DNA and plant transformation --- p.32 / Chapter 2.2.1.2 --- Recombinant DNA techniques --- p.32 / Chapter 2.2.1.3 --- "Preparation and transformation of DH5α, DE3 and Agrobacterium competent cells" --- p.33 / Chapter 2.2.1.4 --- Gel electrophoresis --- p.36 / Chapter 2.2.1.5 --- DNA and RNA extraction --- p.37 / Chapter 2.2.1.6 --- Generation of single-stranded DIG-labeled PCR probes --- p.38 / Chapter 2.2.1.7 --- Testing the concentration of DIG-labeled probes --- p.40 / Chapter 2.2.1.8 --- Northern blot analysis --- p.40 / Chapter 2.2.1.9 --- PCR techniques --- p.41 / Chapter 2.2.1.10 --- Sequencing --- p.42 / Chapter 2.2.2 --- Plant cell culture and transformation / Chapter 2.2.2.1 --- Arabidopsis thaliana --- p.43 / Chapter 2.2.2.2 --- Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cells --- p.44 / Chapter 2.2.3 --- Growth and treatment conditions for plants / Chapter 2.2.3.1 --- Growth and salt treatment condition of soybean samples for gene expression studies of GmPAPS --- p.45 / Chapter 2.2.3.2 --- Root assay of GmPAP3 transgenic Arabidopsis thaliana --- p.46 / Chapter 2.2.4 --- "Immunolabeling, mitochondria integrity, ROS detection and confocal microscopy" / Chapter 2.2.4.1 --- Immunolabeling of GmPAP3-T7 transgenic cell lines --- p.47 / Chapter 2.2.4.2 --- Mitochondria integrity --- p.48 / Chapter 2.2.4.3 --- Detection of Reactive oxygen species (ROS) --- p.48 / Chapter 2.2.4.4 --- Confocal microscopy --- p.49 / Chapter 2.2.4.5 --- Images processing and analysis --- p.49 / Chapter 2.2.5 --- Statistical analysis --- p.50 / Chapter 3. --- Results / Chapter 3.1 --- "Expression of GmPAP3 was induced by NaCl stress, oxidative stress, and dehydration stress" --- p.51 / Chapter 3.2 --- Establishment of GmPAP3-T7 fusion transgenic cell lines / Chapter 3.2.1 --- Subcloning of GmPAP3-T7 into the binary vector system W104 --- p.53 / Chapter 3.2.2 --- Transformation of W104-GmPAP3-T7 into tobacco BY-2 cells --- p.56 / Chapter 3.3 --- Establishment of GmPAP3 trangenic cell lines / Chapter 3.3.1 --- Subcloning of GmPAP3 into the binary vector system W104 --- p.58 / Chapter 3.3.2 --- Transformation of W104-GmPAP3 into tobacco BY-2 cells --- p.58 / Chapter 3.4 --- Establishment of GmPAP3 transgenic Arabidopsis thaliana / Chapter 3.4.1 --- Transformation of W104-GmPAP3 into Arabidopsis thaliana --- p.61 / Chapter 3.5 --- Colocalization of GmPAP3 with MitoTracker-orange --- p.66 / Chapter 3.6 --- Effect of expressing GmPAP 3 on mitochondria integrity of BY-2 cells under NaCl and dehydration stress. --- p.71 / Chapter 3.7 --- Effect of expressing GmPAP3 on ROS production in BY-2 cells under salt and PEG treatment --- p.75 / Chapter 3.8 --- Effect of expressing GmPAP3 in Arabidopsis thaliana under salt stress --- p.81 / Chapter 4. --- Discussion / Chapter 4.1 --- Gene expression profile of GmPAP3 --- p.83 / Chapter 4.2 --- Subcellular localization of GmPAP3 --- p.84 / Chapter 4.3 --- Functional tests of GmPAP 3 transgenic BY-2 cells / Chapter 4.3.1 --- GmPAP3 could protect the plant cells' mitochondria integrity when under salt and dehydration stress --- p.86 / Chapter 4.3.2 --- Expressing GmPAPS in tobacco BY-2 cells were able to reduce the production ofROS under salt and dehydration stresses --- p.88 / Chapter 4.4 --- Functional tests of GmPAP3 transgenic Arabidopsis --- p.91 / Chapter 5. --- Conclusion and perspectives --- p.92 / References --- p.94 / Appendix I: Restriction and modifying enzymes --- p.106 / Appendix II: Chemicals --- p.107 / Appendix III: Commercial kits --- p.111 / Appendix IV: Equipments and facilities used --- p.112 / "Appendix V: Buffer, solution, gel and medium formulation" --- p.113
2

Identification and characterization of salt stress related genes in soybean.

January 2002 (has links)
Phang Tsui-Hung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 146-162). / Abstracts in English and Chinese. / Thesis committee --- p.i / Statement --- p.ii / Abstract --- p.iii / Acknowledgement --- p.vi / Abbreviations --- p.viii / Table of contents --- p.xii / List of figures --- p.xviii / List of tables --- p.xx / Chapter 1. --- Literature Review --- p.1 / Chapter 1.1 --- Salinity as a global problem --- p.1 / Chapter 1.2 --- Formation of saline soil --- p.1 / Chapter 1.3 --- Urgent need to reclaim saline lands --- p.2 / Chapter 1.4 --- Cellular routes for Na+ uptake --- p.2 / Chapter 1.4.1 --- Carriers involved in K+ and Na+ uptake --- p.2 / Chapter 1.4.2 --- Channels involved in K+ and Na+ uptake --- p.4 / Chapter 1.5 --- Adverse effects of high salinity --- p.5 / Chapter 1.5.1 --- Hyperosmotic stress --- p.5 / Chapter 1.5.2 --- Ionic stress --- p.6 / Chapter 1.5.2.1 --- Deficiency of K+ --- p.6 / Chapter 1.5.2.2 --- Perturbation of calcium balance --- p.7 / Chapter 1.5.3 --- Toxicity of specific ions --- p.7 / Chapter 1.5.4 --- Oxidative stress --- p.10 / Chapter 1.6 --- Mechanisms of salt stress adaptation in plants --- p.11 / Chapter 1.6.1. --- Maintenance of ion homeostasis --- p.12 / Chapter 1.6.1.1 --- Regulation of cytosolic Na+ concentration --- p.12 / Chapter 1.6.1.2 --- SOS signal transduction pathway --- p.15 / Chapter 1.6.2 --- Dehydration stress adaptation --- p.17 / Chapter 1.6.2.1 --- Aquaporins ´ؤ water channel proteins --- p.17 / Chapter 1.6.2.2 --- Osmotic adjustment --- p.20 / Chapter 1.6.2.2.1 --- Genetic engineering of glycinebetaine biosynthesis --- p.23 / Chapter 1.6.2.2.2 --- Genetic engineering of mannitol biosynthesis --- p.27 / Chapter 1.6.3 --- Morphological and structural adaptation --- p.28 / Chapter 1.6.4 --- Restoration of oxidative balance --- p.29 / Chapter 1.6.5 --- Other metabolic adaptation --- p.31 / Chapter 1.6.5.1 --- Induction of Crassulacean acid (CAM) metabolism --- p.34 / Chapter 1.6.5.2 --- Coenzyme A biosynthesis --- p.34 / Chapter 1.7 --- Soybean as a target for studying salt tolerance --- p.36 / Chapter 1.7.1 --- Economical importance of soybean --- p.36 / Chapter 1.7.2 --- Reasons for studying salt stress physiology in soybeans --- p.38 / Chapter 1.7.3 --- Salt tolerant soybean in China --- p.39 / Chapter 1.7.4 --- Exploring salt tolerant crops by genetic engineering --- p.41 / Chapter 1.8 --- Significance of this project --- p.47 / Chapter 2. --- Materials and methods --- p.48 / Chapter 2.1 --- Materials --- p.48 / Chapter 2.1.1 --- Plant materials used --- p.48 / Chapter 2.1.2 --- Bacteria strains and plasmid vectors --- p.48 / Chapter 2.1.3 --- Growth media for soybean --- p.48 / Chapter 2.1.4 --- Equipment and facilities used --- p.48 / Chapter 2.1.5 --- Primers used --- p.48 / Chapter 2.1.6 --- Chemicals and reagents used --- p.49 / Chapter 2.1.7 --- Solutions used --- p.49 / Chapter 2.1.8 --- Commercial kits used --- p.49 / Chapter 2.1.9 --- Growth and treatment condition --- p.49 / Chapter 2.1.9.1 --- Characterization of salt tolerance of Wenfeng7 --- p.49 / Chapter 2.1.9.2 --- Samples for subtractive library preparations --- p.50 / Chapter 2.1.9.3 --- Samples for slot blot and northern blot analyses --- p.50 / Chapter 2.1.9.4 --- Samples for gene expression pattern analysis --- p.50 / Chapter 2.2. --- Methods --- p.52 / Chapter 2.2.1 --- Total RNA extraction --- p.52 / Chapter 2.2.2 --- Construction of subtractive libraries --- p.53 / Chapter 2.2.3 --- Cloning of salt-stress inducible genes --- p.53 / Chapter 2.2.3.1 --- Preparation of pBluescript II KS(+) T-vector for cloning --- p.53 / Chapter 2.2.3.2 --- Ligation of candidate DNA fragments with T-vector --- p.53 / Chapter 2.2.3.3 --- Transformation --- p.54 / Chapter 2.2.3.4 --- PCR screening --- p.54 / Chapter 2.2.4 --- Preparation of recombinant plasmid for sequencing --- p.55 / Chapter 2.2.5 --- Sequencing of differentially expressed genes --- p.55 / Chapter 2.2.6 --- Homology search of differentially expressed genes --- p.56 / Chapter 2.2.7 --- Expression pattern analysis --- p.56 / Chapter 2.2.7.1 --- Preparation of single-stranded DIG-labeled PCR probes --- p.56 / Chapter 2.2.7.2 --- Preparation of cRNA DIG-labeled probes --- p.57 / Chapter 2.2.7.3 --- Testing the concentration of DIG-labeled probes --- p.58 / Chapter 2.2.7.4 --- Slot blot --- p.58 / Chapter 2.2.7.5 --- Northern blot --- p.59 / Chapter 2.2.7.6 --- Hybridization --- p.60 / Chapter 2.2.7.7 --- Stringency washed --- p.60 / Chapter 2.2.7.8 --- Chemiluminescent detection --- p.60 / Chapter 3. --- Results --- p.61 / Chapter 3.1 --- Characterization of salt tolerance of Wenfeng7 --- p.61 / Chapter 3.2 --- Identification of salt-stress induced genes from Wenfeng7 --- p.70 / Chapter 3.2.1 --- Screening subtractive libraries of Wenfeng 7 for salt inducible genes --- p.70 / Chapter 3.2.1.1 --- Results of homology search for salt inducible genes --- p.71 / Chapter 3.2.1.2 --- Northern blot showing the salt inducibility of selected clones --- p.72 / Chapter 3.3 --- Genes expression pattern of selected salt inducible genes --- p.104 / Chapter 3.3.1 --- Expression of genes related to dehydration adjustment --- p.104 / Chapter 3.3.1.1 --- Dehydration responsive protein RD22 (Clone no.: HML806) --- p.104 / Chapter 3.3.1.2 --- Beta-amylase (Clone no.: HML767) --- p.104 / Chapter 3.3.2 --- Expression of genes related to structural modification --- p.105 / Chapter 3.3.3 --- Expression of genes related to metabolic adaptation --- p.105 / Chapter 3.3.3.1 --- Subgroup 1: Gene related to protein synthesis --- p.105 / Chapter 3.3.3.1.1 --- Translational initiation factor nsp45 (Clone no.: HML1042) --- p.105 / Chapter 3.3.3.1.2 --- Seed maturation protein PM37 (Clone no.: HML931) --- p.106 / Chapter 3.3.3.2 --- Subgroup 2: Genes related to phosphate metabolism (Clone no.: HML1000) --- p.107 / Chapter 3.3.3.3 --- Subgroup 3: Genes related to storage and mobilization of nutrient resources --- p.107 / Chapter 3.3.3.3.1 --- Vegetative storage protein A (Clone no.: HML762) --- p.107 / Chapter 3.3.3.3.2 --- Cysteine proteinase (Clone no.: HML928) --- p.107 / Chapter 3.3.3.4 --- Subgroup 4: Genes related to senescence --- p.109 / Chapter 3.3.4 --- Expression of genes encoding novel protein (Clone no.: HML782) --- p.109 / Chapter 4. --- Discussion --- p.125 / Chapter 4.1 --- Evaluation of salt tolerance of Wenfeng7 --- p.125 / Chapter 4.2 --- Isolation of salt inducible genes in Wenfeng7 --- p.127 / Chapter 4.2.1 --- Genes associated with dehydration adaptation --- p.129 / Chapter 4.2.1.1 --- Dehydration responsive protein RD22 --- p.129 / Chapter 4.2.1.2 --- Beta-amylase --- p.130 / Chapter 4.2.2 --- Genes associated with structural adaptation --- p.132 / Chapter 4.2.3 --- Genes associated with metabolic adaptation --- p.133 / Chapter 4.2.3.1 --- Subgroup 1: Genes related to protein synthesis --- p.133 / Chapter 4.2.3.2 --- Subgroup 2: Genes related to phosphate metabolism --- p.137 / Chapter 4.2.3.3 --- Subgroup 3: Genes related to storage and mobilization of nutrient resources --- p.138 / Chapter 4.2.3.4 --- Subgroup 4: Genes related to senescence --- p.140 / Chapter 4.2.4 --- Novel genes --- p.142 / Chapter 4.3 --- Brief summary --- p.142 / Chapter 5. --- Conclusion and perspectives --- p.144 / References --- p.146 / Appendix I: Screening for salt tolerant soybeans --- p.163 / Appendix II: Major equipment and facilities used --- p.165 / Appendix III: Major chemicals and reagents used in this research --- p.166 / Appendix IV: Major common solutions used in this research --- p.168 / Appendix V: Commercial kits used in this research --- p.170

Page generated in 0.0393 seconds