• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

<b>LIGHT CURVE SIMULATION AND SHAPE INVERSION FOR HUMAN-MADE SPACE OBJECTS</b>

Liam James Robinson (17551308) 06 December 2023 (has links)
<p dir="ltr">Characterizing unknown space objects is an important component of robust space situational awareness. Estimating the shape of an object allows analysts to perform more accurate orbit propagation, probability of collision, and inference analysis about the object’s origin. Due to the sheer distance from the camera combined with diffraction and atmospheric ef- fects, most resident space objects of interest are unresolved when observed from the ground with electro-optical sensors. State of the art techniques for object characterization often rely on light curves — the time history of the object’s observed brightness. The brightness of the object is a function of the object’s shape, material properties, attitude profile, as well as the observation geometry. The process of measuring real light curves is complex, involv- ing the physics of the object, the sensor, and the background environment. The process of recovering shape information from brightness measurements is known as the light curve shape inversion problem. This problem is ill-posed without further assumptions: modern direct shape inversion methods require that the attitude profile and material properties of the object is known, or at least can be hypothesized. This work describes improvements to light curve simulation that faithfully model the environmental and sensor effects present in true light curves, yielding synthetic measurements with more accurate noise characteris- tics. Having access to more accurate light curves is important for developing and validating light curve inversion methods. This work also presents new methods for direct shape inver- sion for convex and nonconvex objects with realistic measurement noise. In particular, this work finds that improvements to the convex shape inversion process produce more accurate, sparser geometry in less time. The proposed nonconvex shape inversion method is effective at resolving singular large concave feature.</p>
2

Navigating Chaos: Resonant Orbits for Sustaining Cislunar Operations

Maaninee Gupta (8770355) 26 April 2024 (has links)
<p dir="ltr">The recent and upcoming increase in spaceflight missions to the lunar vicinity necessitates methodologies to enable operations beyond the Earth. In particular, there is a pressing need for a Space Domain Awareness (SDA) and Space Situational Awareness (SSA) architecture that encompasses the realm of space beyond the sub-geosynchronous region to sustain humanity's long-term presence in that region. Naturally, the large distances in the cislunar domain restrict access rapid and economical access from the Earth. In addition, due to the long ranges and inconsistent visibility, the volume contained within the orbit of the Moon is inadequately observed from Earth-based instruments. As such, space-based assets to supplement ground-based infrastructure are required. The need for space-based assets to support a sustained presence is further complicated by the challenging dynamics that manifest in cislunar space. Multi-body dynamical models are necessary to sufficiently model and predict the motion of any objects that operate in the space between the Earth and the Moon. The current work seeks to address these challenges in dynamical modeling and cislunar accessibility via the exploration of resonant orbits. These types of orbits, that are commensurate with the lunar sidereal period, are constructed in the Earth-Moon Circular Restricted Three-Body Problem (CR3BP) and validated in the Higher-Fidelity Ephemeris Model (HFEM). The expansive geometries and energy options supplied by the orbits are favorable for achieving recurring access between the Earth and the lunar vicinity. Sample orbits in prograde resonance are explored to accommodate circumlunar access from underlying cislunar orbit structures via Poincaré mapping techniques. Orbits in retrograde resonance, due to their operational stability, are employed in the design of space-based observer constellations that naturally maintain their relative configuration over successive revolutions. </p><p dir="ltr"> Sidereal resonant orbits that are additionally commensurate with the lunar synodic period are identified. Such orbits, along with possessing geometries inherent to sidereal resonant behavior, exhibit periodic alignments with respect to the Sun in the Earth-Moon rotating frame. This characteristic renders the orbits suitable for hosting space-based sensors that, in addition to naturally avoiding eclipses, maintain visual custody of targets in the cislunar domain. For orbits that are not eclipse-favorable, a penumbra-avoidance path constraint is implemented to compute baseline trajectories that avoid Earth and Moon eclipse events. Constellations of observers in both sidereal and sidereal-synodic resonant orbits are designed for cislunar SSA applications. Sample trajectories are assessed for the visibility of various targets in the cislunar volume, and connectivity relative to zones of interest in Earth-Moon plane. The sample constellations and observer trajectories demonstrate the utility of resonant orbits for various applications to sustain operations in cislunar space. </p>

Page generated in 0.1017 seconds