Spelling suggestions: "subject:"space debris."" "subject:"apace debris.""
1 |
The international policy implications of debris in outer spaceBischof, Roberta Joan 08 1900 (has links)
No description available.
|
2 |
The development of an automated optical scanning system and studies of the Earth orbital dust environment by means of the LDEF Micro Abrasion PackagePaley, M. T. January 1995 (has links)
No description available.
|
3 |
Characterisation and dynamic modelling of the near-Earth space particulate environmentSullivan, Kenneth January 1992 (has links)
No description available.
|
4 |
Microparticle hypervelocity impacts on satellites in low-Earth orbitBaron, John Michael January 1996 (has links)
No description available.
|
5 |
Space debris : legal and policy implicationsBaker, Howard A. January 1988 (has links)
No description available.
|
6 |
Legal and technical considerations of space debrisHürl, Kay-Uwe. January 2000 (has links)
This thesis deals with the technical and legal measures presently available to combat space debris. Space debris is not as far out as it sounds. The issue is real and may become severe if no action is taken. / Focusing on existing legal instruments, this study shows their inadequacy in addressing space debris. As space debris was not considered an actual or a legal problem at the time of drafting, the provisions of international space law fail to provide solutions in certain areas. / Recommendations for the future are made. Considering the increase in outer space activities, solutions for the space debris threat are a necessity. Developing technology will only solve some of the problems as the amount of space debris proliferates in collisions of existing debris. Therefore, legal challenges will also be faced, some of which are discussed herein.
|
7 |
The mineralogy and chemistry of micrometeoritesGraham, Giles Andrew January 2000 (has links)
Prior to their retrieval from low Earth orbit (LEO), the individual solar cells that make up the 'V2' solar array panel from the Huhble Space Telescope (HST) were prone to hypervelocity (>5 km/s ) impact damage from micrometeoroids and space debris. The analysis of such passive collector surfaces allows sampling of micrometeoroids that have not undergone any terrestrial atmospheric alteration and better defines the population of space debris particles below the lmm size range. Herein a new approach has been taken to try and identify the nature atid origin of impact derived residues generated in the individual solar cells from the HST. A total of 25 solar cells were selected on the basis that they contained impact craters (100-1000?n diameter) rather than larger impact holes (1-3mm diameter), as preliminary studies indicated that they were more likely to retain impact residues. These were subsequently analysed using digitised hack-scattered electron imaging, coupled with digitised x-ray elemental mapping and micro-spot analysis to locate, identify and classify the residues. 29 impact craters were located on solar cells. In the analysis of the residues; 3 were identified residues as space debris in origin, 6 unclassified and 20 as micrometeoroid. The space debris derived residues were identified as remnants of a paint fragment, a stainless steel particle and a fragment of a printed circuit board. The micrometeoroid derived residues were sub-classified in terms of mineral chemistry, with apparent mafic- and phyllo- silicates being the dominant components, with minor iron-nickel metal and iron sulfides, suggesting a broadly chondritic origin. Fe-Ni rich residue was also identified that would appear to belong to a group of non-chondritic particles previously unrecognised. Possible refractory or Ca/Al rich inclusions from a primitive micrometeoroid were also observed as near intact Ca-rich fragments, the textures of the individual grains suggested that they were not merely terrestrial contamination. Laboratory impact studies, using a light-gas-gun to accelerate small fragments (125- 250?m) of known meteorite mineralogies up to 5km/s, and then impact them into solar cells have generated a suite of residues that are analogues of those observed from LEO studies. The silicate minerals generated residues that were intimately associated with the host melt glass. Metallic sulfides and metals generated surface and sub-surface immiscible droplets. Several craters also contained near-intact fragments of minerals. Overall. despite the small sample set examined. the observed dominance of micrometeoroid to space debris residue chemistry (correlating to particle size range of 8-80 ?m) corresponds well to the accepted flux models.
|
8 |
Hypervelocity impact analysis of International Space Station Whipple and Enhanced Stuffed Whipple Shields /Kalinski, Michael E. January 2004 (has links) (PDF)
Thesis (M.S. in Astronautical Engineering)--Naval Postgraduate School, Dec. 2004. / Thesis Advisor(s): Eric Christiansen, Terry R. McNelley. Includes bibliographical references (p. 275-276) Also available online.
|
9 |
Space debris : legal and policy implicationsBaker, Howard A. January 1988 (has links)
No description available.
|
10 |
Legal and technical considerations of space debrisHörl, Kay-Uwe January 2000 (has links)
No description available.
|
Page generated in 0.0649 seconds