• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Thermal Protection System on Vibration of Aerospace Structural Panels

Derar, Hind D. January 2008 (has links) (PDF)
No description available.
2

Failure and crippling of graphite-epoxy stiffeners loaded in compression

Tyahla, Stephen T. January 1984 (has links)
Results of an experimental study of the failure and crippling of thin-walled open section prismatic compression members are presented. Twenty-four specimens were tested, 13 of which were channel sections and the other 11 were zee sections. Three specimens were made of 2024-T3 aluminum. The remaining 21 specimens were made of AS4-3502 graphite-epoxy. All specimens were tested to failure. Seventeen specimens exhibited local buckling of flanges and webs prior to failure, four exhibited global column buckling prior to failure, two exhibited material short column failure, and one exhibited unstable postbuckling behavior prior to failure. The buckling loads for each specimen were also calculated by a computer code and compared to experimental buckling loads. Good correlation was achieved for specimens that did not buckle as columns. The graphite-epoxy specimens which buckled locally had significant postbuckling response prior to failure at a maximum load (crippling). Differences in the crippling failure and compressive strength failure are discussed for the graphite-epoxy specimens. / Master of Science
3

Characterization of polymer matrix composites and adhesively bonded joints in a cryotank environment

Melcher, Ryan James 12 1900 (has links)
No description available.
4

The effects of space radiation on a chemically modified graphite- epoxy composite material

Reed, Susan Marie January 1986 (has links)
The objective of this study was to characterize the effects of the space environment on the engineering properties and chemistry of a chemically modified T300/934 graphite-epoxy composite system. The material was subjected to 1.0 x 10¹⁰ rads of 1.0 MeV electron irradiation under vacuum to simulate 30 years in geosynchronous earth orbit. Monotonic tension tests were performed at room temperature (75° F /24° C) and elevated temperature (250° F/121° C) on 4-ply unidirectional laminates. From these tests, in-plane engineering and strength properties (E₁, E₂, ν₁₂, G₁₂, X<sub>T</sub>, Y<sub>T</sub>) were determined. Cyclic tests were also performed to characterize energy dissipation changes due to irradiation and elevated temperature. Large diameter graphite fibers were tested to determine the effects of radiation on the stiffness and strength of graphite fibers. No significant changes were observed. Dynamic-mechanical analysis demonstrated that the glass transition temperature was lowered by 50° F (28° C) after irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated material. The chemical modification of the epoxy did not aid in producing a material which was more “radiation resistant" than the standard T300/934 graphite-epoxy system. Irradiation was found to cause crosslinking and chain scission in the polymer. The latter produced low molecular weight products which plasticize the material at elevated temperatures and cause apparent material stiffening at low stresses at room temperature. / M.S.
5

Control of flexible spacecraft during a minimum-time maneuver

Sharony, Yaakov January 1988 (has links)
The problem of simultaneous maneuver and vibration control of a flexible spacecraft can be solved by means of a perturbation approach whereby the slewing of the spacecraft regarded as rigid represents the zero-order problem and the control of elastic vibration, as well as of elastic perturbations from the rigid-body maneuver, represents the first-order problem. The zero-order control is to be carried out in minimum time, which implies on-off control. On the other hand, the perturbed model is described by a high-order set of linear time-varying ordinary differential equations subjected to persistent, piecewise-constant disturbances caused by inertial forces resulting from the maneuver. This dissertation is concerned primarily with the control of the perturbed model during maneuver. On-line computer limitations dictate a reduced-order compensator, thus only a reduced-order model (ROM) is controlled while the remaining states are regarded as residual. Hence, the problem reduces to 1) control in a short time period of a linear time-varying ROM subject to constant disturbances and 2) mitigation of control and observation spillover effects, as well as modeling errors, in a way that the full modeled system remains finite-time stable. The control policy is based on a compensator, which consists of a Luenberger observer and a controller. The main features of the control design are: (1) the time-varying ROM is stabilized within the finite-time interval by an optimal linear quadratic regulator, (2) a weighted norm spanning the full modeled state is minimized toward the end of the time interval, and (3) the supremum"time constant" of the full modeled system is minimized, while (1) serves as a constraint, thus resulting in a finite-time stable modeled system. The above developments are illustrated by means of a numerical example. / Ph. D.
6

Inverse estimation methodology for the analysis of aeroheating and thermal protection system data

Mahzari, Milad 13 January 2014 (has links)
Thermal Protection System (TPS) is required to shield an atmospheric entry vehicle against the high surface heating environment experienced during hypersonic flight. There are significant uncertainties in the tools and models currently used for the prediction of entry aeroheating and TPS material thermal response. These uncertainties can be reduced using experimental data. Analysis of TPS ground and flight data has been traditionally performed in a direct fashion. Direct analyses center upon comparison of the computational model predictions to data. Qualitative conclusions about model validity may be drawn based on this comparison and a limited number of model parameters may be iteratively adjusted to obtain a better match between predictions and data. The goal of this thesis is to develop a more rigorous methodology for the estimation of surface heating and TPS material response using inverse estimation theory. Built on theoretical developments made in related fields, this methodology enables the estimation of uncertainties in both the aeroheating environment and material properties from experimental temperature data. Unlike direct methods, the methodology developed here is capable of estimating a large number of independent parameters simultaneously and reconstructing the time-dependent surface heating profile in an automated fashion. This methodology is applied to flight data obtained from thermocouples embedded in the Mars Pathfinder and Mars Science Laboratory entry vehicle heatshields.

Page generated in 0.0979 seconds