Spelling suggestions: "subject:"space vehicles -- buclear power plants."" "subject:"space vehicles -- cuclear power plants.""
1 |
WEIGHTED RESIDUAL METHODS IN SPACE-DEPENDENT REACTOR DYNAMICSFuller, Edward Lewis, 1940-, Fuller, Edward Lewis, 1940- January 1969 (has links)
No description available.
|
2 |
Development of systems analysis program for space reactor studiesLewis, Bryan R. 14 June 1993 (has links)
An overall systems design code was developed to model
an advanced in-core thermionic energy conversion based
nuclear reactor system for space applications at power
levels of 10 to 50 kWe. The purpose of this work was to
provide the overall shell for the systems code and to also
provide the detailed neutronic analysis section of the code.
The design code that was developed is to be used to evaluate
a reactor system based upon a single cell thermionic fuel
element which uses advanced technology to enhance the
performance of single cell thermionic fuel elements.
A literature survey provided information concerning how
other organizations performed system studies on similar
space reactor designs. / Graduation date: 1994
|
3 |
System modeling and reactor design study of an advanced incore thermionic space reactorLee, Hsing Hui 12 October 1992 (has links)
Incore thermionic space reactor design concepts which operate at a
nominal power output range of 20 to 50 kWe are described. Details of the
neutronic, thermionic, thermal hydraulics and shielding performance are
presented. Due to the strong absorption of thermal neutrons by natural
tungsten, and the large amount of that material within the reactor core,
two designs are considered.
An overall system design code has been developed at Oregon State
University to model advanced incore thermionic energy conversion based
nuclear reactor systems for space applications. The code modules include
neutronics and core criticality, a thermionic fuel element performance
module with integral thermal hydraulics calculation capability, a
radiation shielding module, and a module for the waste heat rejection.
The results show that the driverless single cell ATI configuration,
which does not have driver rods, proved to be more efficient than the
driven core, which has driver rods. It also shows that the inclusion of
the true axial and radial power distribution decrease the overall
conversion efficiency. The flattening of the radial power distribution by
three different methods would lead to a higher efficiency. The results
show that only one thermionic fuel element (TFE) works at the optimum
emitter temperature; all other TFEs are off the optimum performance and
result in 40 % decrease of the efficiency of the overall system. / Graduation date: 1993
|
4 |
Nuclear design analysis of low-power (1-30 KWe) space nuclear reactor systemsGedeon, Stephen R. 23 November 1993 (has links)
Preliminary nuclear design studies have been completed on ten
configurations of nuclear reactors for low power (1-30 kWe) space
applications utilizing thermionic energy conversion. Additional design
studies have been conducted on the TRICE multimegawatt in-core
thermionic reactor configuration. In each of the cases, a reactor
configuration has been determined which has the potential for operating
7 years with sufficient reactivity margin. Additional safety
evaluations have been conducted on these configurations including the
determination of sufficient shutdown reactivity, and consideration of
water immersion, water flooding, sand burial, and reactor compaction
accident scenarios. It has been found, within the analysis conducted
using the MCNP Monte Carlo neutron transport code, that there are
configurations which are feasible and deserve further analysis. It has
also been found that solid core reactors which rely solely on conduction
for heat removal as well as pin type cores immersed in a liquid metal
bath have merit. The solid cores look attractive when flooding and
compaction accident scenarios are considered as there is little chance
for water to enter the core and cause significant neutron moderation. A
fuel volume fraction effect has also been found in the consideration of
the sand burial cases for the SP-100 derived configurations. / Graduation date: 1994
|
5 |
Survey of developments of ionic propulsion systems for space vehiclesHungerford, Franklin McDonald, 1929- January 1962 (has links)
No description available.
|
6 |
Experimental simulations of a rotating bubble membrane radiator for space nuclear power systemsAl-Baroudi, Homan Mohammed-Zahid 30 March 1993 (has links)
A rotating, flat plate condensation experiment has been developed to
investigate the heat of the Rotating Bubble Membrane Radiator (RBMR). The
RBMR is a proposed heat rejection system for space applications which uses
working fluid condensation on the inside surface of a rotating sphere to
reject heat to space. The flat plate condensation heat transfer
experiment simulates the microgravity environment of space by orienting
the axis of rotation parallel to the gravitational vector and normal to
the surface of the plate. The condensing surface is cooled to simulate the
rejection of heat to cold surface. The working fluid is a super heated
steam.
The results obtained include relationships between the overall heat
transfer coefficient as a function of the temperature difference between
the working fluid and a cold environment, both placed in dimensionless
groups, and plate angular rotational speeds. This empirical relationship
is useful for choosing the optimum rotational speed for the flat plate
radiator given a desired heat rejection load.
A RBMR prototype, using full sphere shell, was designed and built
completely in this research efforts and ready to be tested in future
planned experiments in microgravity environment. This RBMR is the first
one ever built to investigate the RBMR concepts experimentally.
This study also provides the basis for designing new heat rejection
systems utilizing centrifugal forces and condensation phenomena in both
space and ground applications. / Graduation date: 1993
|
Page generated in 0.074 seconds