• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hybrid particle-finite element simulation of large deformation dynamics in composite materials

Park, Young-keun 28 August 2008 (has links)
Not available / text
2

Meteoroid damage to a large space telescope mirror

Hamilton, Joseph Barry January 1976 (has links)
Thesis. 1976. B.S.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / Microfiche copy available in Archives and Engineering. / Includes bibliographical references. / by Joseph B. Hamilton. / B.S.
3

The response of a single wall space structure to impact by cometary meteoroids of various shapes

Hayduk, Robert John January 1968 (has links)
Linear, small deflection plate theory is used to study the stress at the contact axis and the deflection of an infinite plate caused by the impact of an axisymmetric cometary meteoroid. The analysis assumes that momentum exchange is the primary mechanism, that the time of exchange is instantaneous, and that the momentum of the meteoroid is negligible after impact. The stress at the origin is reduced to a single definite integral and the deflection to the Hankel inversion integral, both requiring definition of the particular projectile before further evaluation. A particular cometary meteoroid is mathematically represented in the analysis by its projected momentum per unit area onto the plate. The three specific shapes studies are the usual projectile shapes used in hypervelocity laboratories - cylinder, cone, and sphere - even though the analysis is not intended for the high-strength, high-density laboratory projectiles. Projectile comparisons based on equal mass, diameter, and total momentum indicate that frangible, low-strength cone projectiles cause significantly higher stresses and larger displacements of the plate at short times after impact than similar sphere and cylinder projectiles. / Master of Science

Page generated in 0.1224 seconds