Spelling suggestions: "subject:"spacetime block modes"" "subject:"spacetime block codes""
1 |
Performance Evaluation of Spatial Modulation and QOSTBC for MIMO SystemsAnoh, Kelvin O.O., Abd-Alhameed, Raed, Okorafor, G.N., Noras, James M., Rodriguez, Jonathan, Jones, Steven M.R. 21 July 2015 (has links)
Yes / Multiple-input multiple-output (MIMO) systems require simplified architectures that can maximize design parameters without sacrificing system performance. Such architectures may be used in a transmitter or a receiver. The most recent example with possible low cost architecture in the transmitter is spatial modulation (SM). In this study, we evaluate the SM and quasi-orthogonal space time block codes (QOSTBC) schemes for MIMO systems over a Rayleigh fading channel. QOSTBC enables STBC to be used in a four antenna design, for example. Standard QO-STBC techniques are limited in performance due to self-interference terms; here a QOSTBC scheme that eliminates these terms in its decoding matrix is explored. In addition, while most QOSTBC studies mainly explore performance improvements with different code structures, here we have implemented receiver diversity using maximal ratio combining (MRC). Results show that QOSTBC delivers better performance, at spectral efficiency comparable with SM.
|
2 |
Design and performance analysis of distributed space time coding schemes for cooperative wireless networksOwojaiye, Gbenga Adetokunbo January 2012 (has links)
In this thesis, space-time block codes originally developed for multiple antenna systems are extended to cooperative multi-hop networks. The designs are applicable to any wireless network setting especially cellular, adhoc and sensor networks where space limitations preclude the use of multiple antennas. The thesis first investigates the design of distributed orthogonal and quasi-orthogonal space time block codes in cooperative networks with single and multiple antennas at the destination. Numerical and simulation results show that by employing multiple receive antennas the diversity performance of the network is further improved at the expense of slight modification of the detection scheme. The thesis then focuses on designing distributed space time block codes for cooperative networks in which the source node participates in cooperation. Based on this, a source-assisting strategy is proposed for distributed orthogonal and quasi-orthogonal space time block codes. Numerical and simulation results show that the source-assisting strategy exhibits improved diversity performance compared to the conventional distributed orthogonal and quasi-orthogonal designs.Motivated by the problem of channel state information acquisition in practical wireless network environments, the design of differential distributed space time block codes is investigated. Specifically, a co-efficient vector-based differential encoding and decoding scheme is proposed for cooperative networks. The thesis then explores the concatenation of differential strategies with several distributed space time block coding schemes namely; the Alamouti code, square-real orthogonal codes, complex-orthogonal codes, and quasiorthogonal codes, using cooperative networks with different number of relay nodes. In order to cater for high data rate transmission in non-coherent cooperative networks, differential distributed quasi-orthogonal space-time block codes which are capable of achieving full code-rate and full diversity are proposed. Simulation results demonstrate that the differential distributed quasi-orthogonal space-time block codes outperform existing distributed space time block coding schemes in terms of code rate and bit-error-rate performance. A multidifferential distributed quasi-orthogonal space-time block coding scheme is also proposed to exploit the additional diversity path provided by the source-destination link.A major challenge is how to construct full rate codes for non-coherent cooperative broadband networks with more than two relay nodes while exploiting the achievable spatial and frequency diversity. In this thesis, full rate quasi-orthogonal codes are designed for noncoherent cooperative broadband networks where channel state information is unavailable. From this, a generalized differential distributed quasi-orthogonal space-frequency coding scheme is proposed for cooperative broadband networks. The proposed scheme is able to achieve full rate and full spatial and frequency diversity in cooperative networks with any number of relays. Through pairwise error probability analysis we show that the diversity gain of the proposed scheme can be improved by appropriate code construction and sub-carrier allocation. Based on this, sufficient conditions are derived for the proposed code structure at the source node and relay nodes to achieve full spatial and frequency diversity. In order to exploit the additional diversity paths provided by the source-destination link, a novel multidifferential distributed quasi-orthogonal space-frequency coding scheme is proposed. The overall objective of the new scheme is to improve the quality of the detected signal at the destination with negligible increase in the computational complexity of the detector.Finally, a differential distributed quasi-orthogonal space-time-frequency coding scheme is proposed to cater for high data rate transmission and improve the performance of noncoherent cooperative broadband networks operating in highly mobile environments. The approach is to integrate the concept of distributed space-time-frequency coding with differential modulation, and employ rotated constellation quasi-orthogonal codes. From this, we design a scheme which is able to address the problem of performance degradation in highly selective fading environments while guaranteeing non-coherent signal recovery and full code rate in cooperative broadband networks. The coding scheme employed in this thesis relaxes the assumption of constant channel variation in the temporal and frequency dimensions over long symbol periods, thus performance degradation is reduced in frequencyselective and time-selective fading environments. Simulation results illustrate the performance of the proposed differential distributed quasi-orthogonal space-time-frequency coding scheme under different channel conditions.
|
3 |
Performance Analysis of Maximal-Ratio Combining and Space-Time Block Codes with Transmit Antenna Selection over Nakagami-m Fading ChannelsChi, Zhanjiang January 2007 (has links)
Master of Engineering (Research) / The latest wireless communication techniques such as highspeed wireless internet application demand higher data rates and better quality of service (QoS). However, transmission reliability is still degraded by harsh propagation channels. Multiple-input multiple-output (MIMO) systems can increase the system capacity and improve transmission reliability. By transmitting multiple copies of data, a MIMO system can effectively combat the effects of fading. Due to the high hardware cost of a MIMO system, antenna selection techniques have been applied in MIMO system design to reduce the system complexity and cost. The Nakagami-m distribution has been considered for MIMO channel modeling since a wide range of fading channels, from severe to moderate, can be modeled by using Nakagami-m distribution. The Rayleigh distribution is a special case of the Nakagami-m distribution. In this thesis, we analyze the error performance of two MIMO schemes: maximal-ratio combining with transmit antenna selection (the TAS/MRC scheme) and space-time block codes with transmit antenna selection (the TAS/STBC scheme) over Nakagami-m fading channels. In the TAS/MRC scheme, one of multiple transmit antennas, which maximizes the total received signal-to-noise ratio (SNR), is selected for uncoded data transmission. First we use a moment generating function based (MGF-based) approach to derive the bit error rate (BER) expressions for binary phase shift keying (BPSK), the symbol error rate (SER) expressions for M-ray phase shift keying (MPSK) and M-ray quadrature amplitude modulation (MQAM) of the TAS/MRC scheme over Nakagami-m fading channels with arbitrary and integer fading parameters m. The asymptotic performance is also investigated. It is revealed that the asymptotic diversity order is equal to the product of the Nakagami fading parameter m, the number of transmit antenna Lt and the number of receive antenna Lr as if all transmit antenna were used. Then a Gaussian Q-functions approach is used to investigate the error performance of the TAS/STBC scheme over Nakagami-m fading channels. In the TAS/STBC scheme, two transmit antennas, which maximize the output SNR, are selected for transmission. The exact and asymptotic BER expressions for BPSK are obtained for the TAS/STBC schemes with three and four transmit antennas. It is shown that the TAS/STBC scheme can provide a full diversity order of mLtLr.
|
4 |
Performance Analysis of Maximal-Ratio Combining and Space-Time Block Codes with Transmit Antenna Selection over Nakagami-m Fading ChannelsChi, Zhanjiang January 2007 (has links)
Master of Engineering (Research) / The latest wireless communication techniques such as highspeed wireless internet application demand higher data rates and better quality of service (QoS). However, transmission reliability is still degraded by harsh propagation channels. Multiple-input multiple-output (MIMO) systems can increase the system capacity and improve transmission reliability. By transmitting multiple copies of data, a MIMO system can effectively combat the effects of fading. Due to the high hardware cost of a MIMO system, antenna selection techniques have been applied in MIMO system design to reduce the system complexity and cost. The Nakagami-m distribution has been considered for MIMO channel modeling since a wide range of fading channels, from severe to moderate, can be modeled by using Nakagami-m distribution. The Rayleigh distribution is a special case of the Nakagami-m distribution. In this thesis, we analyze the error performance of two MIMO schemes: maximal-ratio combining with transmit antenna selection (the TAS/MRC scheme) and space-time block codes with transmit antenna selection (the TAS/STBC scheme) over Nakagami-m fading channels. In the TAS/MRC scheme, one of multiple transmit antennas, which maximizes the total received signal-to-noise ratio (SNR), is selected for uncoded data transmission. First we use a moment generating function based (MGF-based) approach to derive the bit error rate (BER) expressions for binary phase shift keying (BPSK), the symbol error rate (SER) expressions for M-ray phase shift keying (MPSK) and M-ray quadrature amplitude modulation (MQAM) of the TAS/MRC scheme over Nakagami-m fading channels with arbitrary and integer fading parameters m. The asymptotic performance is also investigated. It is revealed that the asymptotic diversity order is equal to the product of the Nakagami fading parameter m, the number of transmit antenna Lt and the number of receive antenna Lr as if all transmit antenna were used. Then a Gaussian Q-functions approach is used to investigate the error performance of the TAS/STBC scheme over Nakagami-m fading channels. In the TAS/STBC scheme, two transmit antennas, which maximize the output SNR, are selected for transmission. The exact and asymptotic BER expressions for BPSK are obtained for the TAS/STBC schemes with three and four transmit antennas. It is shown that the TAS/STBC scheme can provide a full diversity order of mLtLr.
|
5 |
A Cognitive MIMO OFDM Detector Design for Computationally Efficient Space-Time DecodingGrabner, Mitchell J 08 1900 (has links)
In this dissertation a computationally efficient cognitive multiple-input multiple-output (MIMO) orthogonal frequency division duplexing (OFDM) detector is designed to decode perfect space-time coded signals which are able maximize the diversity and multiplexing properties of a rich fading MIMO channel. The adaptive nature of the cognitive detector allows a MIMO OFDM communication system to better meet to needs of future wireless communication networks which require both high reliability and low run-time complexity depending on the propagation environment. The cognitive detector in conjunction with perfect space-time coding is able to achieve up to a 2 dB bit-error rate (BER) improvement at low signal-to-noise ratio (SNR) while also achieving comparable runtime complexity in high SNR scenarios.
|
6 |
Channel estimation and performance analysis of MIMO-OFDM communications using space-time and space-frequency coding schemesDelestre, Fabien January 2011 (has links)
This thesis is concerned with channel estimation and data detection of MIMO-OFDM communication systems using Space-Time Block Coding (STBC) and Space-Frequency Block Coding (SFBC) under frequency selective channels. A new iterative joint channel estimation and signal detection technique for both STBC-OFDM and SFBC-OFDM systems is proposed. The proposed algorithm is based on a processive sequence of events for space time and space frequency coding schemes where pilot subcarriers are used for channel estimation in the first time instant, and then in the second time instant, the estimated channel is used to decode the data symbols in the adjacent data subcarriers. Once data symbols are recovered, the system recursively performs a new channel estimation using the decoded data symbols as pilots. The iterative process is repeated until all MIMO-OFDM symbols are recovered. In addition, the proposed channel estimation technique is based on the maximum likelihood (ML) approach which offers linearity and simplicity of implementation. Due to the orthogonality of STBC and SFBC, high computation efficiency is achieved since the method does not require any matrix inversion for estimation and detection at the receiver. Another major novel contribution of the thesis is the proposal of a new group decoding method that reduces the processing time significantly via the use of sub-carrier grouping for transmitted data recovery. The OFDM symbols are divided into groups to which a set of pilot subcarriers are assigned and used to initiate the channel estimation process. Designated data symbols contained within each group of the OFDM symbols are decoded simultaneously in order to improve the decoding duration. Finally, a new mixed STBC and SFBC channel estimation and data detection technique with a joint iterative scheme and a group decoding method is proposed. In this technique, STBC and SFBC are used for pilot and data subcarriers alternatively, forming the different combinations of STBC/SFBC and SFBC/STBC. All channel estimation and data detection methods for different MIMO-OFDM systems proposed in the thesis have been simulated extensively in many different scenarios and their performances have been verified fully.
|
7 |
Performance Analysis of DC-offset STBCs for MIMO Optical Wireless CommunicationsSapenov, Yerzhan 04 1900 (has links)
In this report, an optical wireless multiple-input multiple-output communication system employing intensity-modulation direct-detection is considered. The performance of direct current offset space-time block codes (DC-STBC) is studied in terms of pairwise error probability (PEP). It is shown that among the class of DC-STBCs, the worst case PEP corresponding to the minimum distance between two codewords is minimized by repetition coding (RC), under both electrical and optical individual power constraints. It follows that among all DC-STBCs, RC is optimal in terms of worst-case PEP for static channels and also for varying channels under any turbulence statistics. This result agrees with previously published numerical results showing the superiority of RC in such systems. It also agrees with previously published analytic results on this topic under log-normal turbulence and further extends it to arbitrary turbulence statistics. This shows the redundancy of the time-dimension of the DCSTBC in this system. This result is further extended to sum power constraints with static and turbulent channels, where it is also shown that the time dimension is redundant, and the optimal DC-STBC has a spatial beamforming structure. Numerical
results are provided to demonstrate the difference in performance for systems with different numbers of receiving apertures and different throughput.
|
8 |
Reliability-based Detection of Variable-rate Space-time Block CodesKiarashi, Nooshin 27 September 2008 (has links)
We present a new sub-optimal near-maximum-likelihood (ML) detection
method for the family of variable-rate space-time block codes
(VRSTBC). The proposed detection method is based on the concept of
symbol reliability and provides a wide range of
performance-complexity trade-offs. The reliability measures are
defined with the help of a recent generic ML metric expression. The
error performance and complexity analysis of the method via
simulations show an achievable near-ML error performance with
significant reduction in complexity. The performance of the proposed
method is also compared with the group interference cancellation
(GIC) method which was the detection method originally applied to
VRSTBCs and the results show a significant improvement. The new
method offers various levels of error protection via a simple
parameter and hence can provide the users of a wireless network with
different performance levels according to their cost allowance.
Unequal error protection by VRSTBCs under the new detection method
was explored. Several applications integrating data with different
levels of sensitivity to error can benefit from the wide range of
possibilities that the combination of the proposed detection method
and VRSTBCs provides. To further explore these flexibilities, four
practically interesting power allocation schemes were applied to the
transmission and the behaviors were observed through case studies. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2008-09-26 23:45:07.81
|
9 |
Space-Time Block-Encoded 16-APSK in Aeronautical Mobile TelemetryTwitchell, Autumn 02 August 2022 (has links)
The two-antenna problem in aeronautical mobile telemetry is created by the reception of two copies of the same RF waveform with different phases and time delays. Alamouti and Alamouti-like space time block codes can solve the two-antenna problem, but the decoder/detector needs to account for the different time delays between the signals received from the two transmit antennas. In this thesis, a comparison is made between the performance of Alamouti space-time block codes and time-reversed space-time block codes with 16-APSK to solve the two-antenna problem. The maximum likelihood decoder/detector for Alamouti-encoded 16-APSK is a sequence detector operating on a trellis with a large number of states. A practical state-reduction technique is presented. The results produce a trellis with 256 states and a small loss in bit error rate performance as long as the delay difference is not too big. The decoder/detector for the time-reversed space time block requires only waveform manipulations and channel matched filtering in the case where the two channels are simple delays. For the more general case of multipath propagation between the two transmit antennas and the receiver, the decoder/detector requires an equalizer; simulation results using a channel pair measured at a test range show that the decoder/detector is capable of achieving near AWGN performance with a modest equalizer.
|
10 |
Unitary Trace-Orthogonal Space-Time Block Codes in Multiple Antenna Wireless CommunicationsLiu, Jing 09 1900 (has links)
<p> A multiple-input multiple-output (MIMO) communication system has the potential to provide reliable transmissions at high data rates. However, the computational cost of achieving this promising performance can be quite substantial. With an emphasis on practical implementations, the MIMO systems employing the low cost linear receivers are studied in this thesis. The optimum space-time block codes (STBC) that enable a linear receiver to achieve its best possible performance are proposed for various MIMO systems. These codes satisfy an intra and inter orthogonality property, and are called unitary trace-orthogonal codes. In addition, several novel transmission schemes are specially designed for linear receivers with the use of the proposed code structure. The applications of the unitary trace-orthogonal code are not restricted to systems employing linear receivers. The proposed code structure can be also applied to the systems employing other types of receivers where several originally intractable code design problems are successfully solved.</p>
<p>The communication schemes presented in this thesis are outlined as follows:
•For a MIMO system with N ≥ M, where M and N are the number of transmitter and receiver antennas, respectively, the optimal full rate linear STBC for linear receivers is proposed and named unitary trace-orthogonal code. The proposed code structure is proved to be necessary and sufficient to achieve the minimum detection error probability for the system.
• When applied to a multiple input single output (MISO) communication system, a special linear unitary trace-orthogonal code, named the Toeplitz STBC, is proposed. The code enables a linear receiver to provide full diversity and to achieve the optimal tradeoff between the detection error and the data transmission rate. This is, thus far, the first code that possesses such properties for an arbitrary MISO system that employs a linear receiver.
• In MIMO systems in which N ≥ M and the signals are transmitted at full symbol rate, the highest diversity gain achievable by linear receivers is analyzed and shown to be N - M + 1. To improve the performance of a linear receiver, a multi-block transmission scheme is proposed, in which signals are coded so that they span multiple independent channel realizations. An optimal full rate linear STBC for this system that minimizes the detection error probability is presented. The code is named multi-block unitary trace-orthogonal code. The resulting system has an improved diversity gain. Furthermore, by relaxing the code from the full symbol rate constraint, a special multi-block transmission scheme is proposed. This scheme achieves a much improved diversity gain than those with full symbol rate.
• The unitary trace-orthogonal code can also be applied to a system that employs a maximum-likelihood (ML) receiver rather than the simple linear receiver. For such a system, a systematic design of full diversity unitary trace-orthogonal code is presented for an arbitrary data transmission rate. </p>
<p>In summary, when a simple linear receiver is employed, unitary trace-orthogonal codes and their optimality properties are exploited for various multiple antenna communication systems. Some members from this code family can also enable an optimal performance of ML detection. </P> / Thesis / Doctor of Philosophy (PhD)
|
Page generated in 0.0615 seconds