• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combined Space-Time Diversity and Interference Cancellation for MIMO Wireless Systems

Tsai, Jiann-An 03 May 2002 (has links)
There is increasing interest in the exploitation of multiple-input and multiple-output (MIMO) channels to enhance the capacity of wireless systems. In this study, we develop and evaluate a channel model, evaluate the corresponding channel capacity, and design and analyze a simple orthogonal transmit waveform for MIMO channels in mobile radio environments. We also evaluate the system performance of various interference cancellation techniques when employing multiple-receive antenna in interference-limited systems. The first part of this dissertation presents two major contributions to MIMO systems. The analytical expression for space-time MIMO channel correlation is derived for a Rayleigh fading channel. The information-theoretic channel capacity based on this correlation is also evaluated for a wide variety of mobile radio channels. The second part of this dissertation presents two major contributions to the area of orthogonal waveform design. We analyze the bit-error-rate (BER) performance of a proposed space-time orthogonal waveform for MIMO mobile radio communications. The application of the proposed space-time orthogonal waveform to a conventional cellular system is also evaluated and briefly discussed. Finally, this dissertation investigates a number of interference cancellation techniques for multiple-receive antenna systems. Both adaptive beamforming and multiuser detection are evaluated for various signal waveforms over a variety of mobile radio channels. / Ph. D.

Page generated in 0.0689 seconds