• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Domain-Specific Design Tool for Verifying Spacecraft System Behavior

Venigalla, Sravanthi 01 December 2009 (has links)
In this report we present a graphical tool, Behavioral Analysis of Spacecraft Systems (BASS), that can be used by spacecraft designers to perform system-level behavioral analysis of small satellites. The domain-specific spacecraft meta-model is created in the visual modeling tool Generic Modeling Environment (GME) such that spacecraft designs created using the meta-model appear familiar to the spacecraft designers. Users can model scenarios that are to be verified for the design in BASS. The graphical models are assigned formal semantics facilitating the creation of formally verifiable spacecraft models. The C++ application that translates the modeling objects to equivalent mathematical representation of interest is called BASS Interpreter and is bound to the meta-model. BASS Interpreter that generates Communicating Sequential Processes (CSP) semantics for the visual spacecraft models is supported in the current work. The model-checker for CSP called Failures Divergences and Refinement (FDR) is run to explore the state-space of the spacecraft process model to comment on the design. We demonstrate the feasibilty and advantage of incorporating BASS into initial design phases of small satellite development by successfully verifying the design of Tomographic Remote Observer of Ionospheric Disturbances (TOROID).

Page generated in 0.0444 seconds