• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Constru??o e valida??o de um receptor GPS para uso espacial

Albuquerque, Glauberto Leilson Alves de 20 November 2009 (has links)
Made available in DSpace on 2014-12-17T14:55:41Z (GMT). No. of bitstreams: 1 GlaubertoLAA.pdf: 3487440 bytes, checksum: bcd5cef1c854f4d01f9c73419e1d7d42 (MD5) Previous issue date: 2009-11-20 / Global Positioning System, or simply GPS, it is a radionavigation system developed by United States for military applications, but it becames very useful for civilian using. In the last decades Brazil has developed sounding rockets and today many projects to build micro and nanosatellites has appeared. This kind of vehicles named spacecrafts or high dynamic vehicles, can use GPS for its autonome location and trajectories controls. Despite of a huge number of GPS receivers available for civilian applications, they cannot used in high dynamic vehicles due environmental issues (vibrations, temperatures, etc.) or imposed dynamic working limits. Only a few nations have the technology to build GPS receivers for spacecrafts or high dynamic vehicles is available and they imposes rules who difficult the access to this receivers. This project intends to build a GPS receiver, to install them in a payload of a sounding rocket and data collecting to verify its correct operation when at the flight conditions. The inner software to this receiver was available in source code and it was tested in a software development platform named GPS Architect. Many organizations cooperated to support this project: AEB, UFRN, IAE, INPE e CLBI. After many phases: defining working conditions, choice and searching electronic, the making of the printed boards, assembling and assembling tests; the receiver was installed in a VS30 sounding rocket launched at Centro de Lan?amento da Barreira do Inferno in Natal/RN. Despite of the fact the locations data from the receiver were collected only the first 70 seconds of flight, this data confirms the correct operation of the receiver by the comparison between its positioning data and the the trajectory data from CLBI s tracking radar named ADOUR / O Sistema de Posicionamento Global, conhecido mundialmente pala sigla GPS, ? um sistema de radionavega??o constru?do pelos norte-americanos com inten??es militares, mas que encontraram, com o passar do tempo, muitas aplica??es de uso civil. No Brasil, al?m do desenvolvimento de foguetes de sondagem, come?am a aparecer projetos de constru??o de micro e nanosat?lites. Estes ve?culos denominados espaciais ou de alta din?mica podem, quando em voo, usufruir do sistema GPS para localiza??o aut?noma e verifica??o/controle das suas trajet?rias. Apesar da enorme disponibilidade de receptores GPS no mercado civil, estes n?o podem ser utilizados em ve?culos de alta din?mica, seja por quest?es ambientais (vibra??es, temperaturas elevadas, etc.) ou por prote??o l?gica (via software). Os receptores para uso em ve?culos de alta din?mica, ou ve?culos espaciais, fazem parte de uma tecnologia restrita a poucos pa?ses, que estabelecem regras muito r?gidas para suas aquisi??es. O presente projeto objetiva construir e validar funcionamento b?sico deste receptor ao instal?-lo num foguete de sondagem e coleta de dados em voo. O software a ser utilizado no receptor j? estava dispon?vel em c?digo fonte e testado em uma plataforma de desenvolvimento denominada GPS Architect. V?rios organismos cooperaram para realiza??o projeto: AEB, UFRN, IAE, INPE e CLBI. Ap?s v?rios passos para realiza??o do projeto: defini??o das condi??es de funcionamento, escolha e aquisi??o dos componentes eletr?nicos, fabrica??o das placas de circuito impresso, montagem e testes de integra??o; o mesmo foi instalado num foguete de sondagem VS30 lan?ado a partir do Centro de Lan?amento da Barreira do Inferno em Natal/RN. Apesar da coleta parcial dos dados do receptor, por falha t?cnica do sistema de telemetria do foguete, os resultados obtidos foram suficientes para validar o funcionamento do receptor a partir da compara??o entre os dados de trajetografia fornecidos pelo receptor GPS e o radar de trajetografia do CLBI conhecido como Radar ADOUR
2

Design And Analysis Of Flexible Beam Platform As Vibration Isolator For Space Applications

Kamesh, D 02 1900 (has links) (PDF)
Spacecrafts are generally equipped with high precision optical and other sensor payloads. The structures of most of the spacecrafts are light-weight, flexible and have low damping. Vibrations are often induced in the spacecraft body due to the presence of many disturbance sources such as momentum/reaction wheels, control thrusters used for attitude control and cryocoolers etc. Low damping leads to long decay time for vibrations hence during this period the spacecraft sensors cannot be used effectively. One possible solution is to isolate the precision sensor from the rest of the satellite and this strategy has been used for spaceborne telescopes and interferometers that have extremely precise positional and vibratory tolerances imposed on them in order to achieve scientific goals. Another strategy is to isolate the vibration source itself from the spacecraft body. This thesis deals with modelling, analysis and experimentation of a novel low frequency flexible space platform designed to serve as a mount for the disturbance source in order to insulate the source generated vibrations reaching critical areas of the structure. The novel space platform consisting of folded continuous beams, is light-weight and is capable of isolating vibration generated by sources such as reaction/momentum wheels. Finite element analysis of the platform is carried out for static and dynamic load cases. Simulation studies are carried out on flexible beam platform in order to firm up the design for passive vibration isolation. Modal analyses is done to simulate the response of each mode. Active control has been studied by embedding the platform’s beam elements with piezo actuators and sensors. The simulation results show that the space platform can effectively attenuate vibration and further improvement in vibration attenuation is possible with active control. Based on the analysis, a prototype low frequency platform has been designed and fabricated. An experimental validation has been done to test the usefulness of the low frequency platform to act as a mount for reaction wheels and to mitigate the vibration disturbances/effects transmitted from the reaction wheel assembly to structure. Measurements and tests have been conducted at varying wheel speeds to quantify and characterize the amount of isolation to the reaction wheel generated vibrations. The time and frequency domain analysis of test data clearly show that level of isolation is significant and an average of 13 dB of isolation is seen. The level of isolation is different for different isolators and it depends upon the isolator design and wheel speed. Forces and moments measured at the base for wheel with isolator and wheel without isolator clearly demonstrate and confirm a reduction in the disturbance levels of atleast one order. These isolators are further tested successfully for launch dynamic loads in order to confirm the design adequacy to sustain such loads. Results indicate that the flexible mounts of the type discussed in this thesis can be used for effective passive vibration isolation in spacecrafts with reaction/momentum wheels.

Page generated in 0.0276 seconds