• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The surface area preserving mean curvature flow

McCoy, James A. (James Alexander), 1976- January 2002 (has links)
Abstract not available
2

Alguns resultados tipo-Bernstein em variedades semi-riemannianas / Some Bernstein-type results in semi-riemannian manifolds

Ulisses Lima Parente 05 May 2011 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Nesta tese, estudamos hipersuperfÃcies de tipo-espaÃo completas imersas em variedades semi-Riemannianas, satisfazendo alguma condiÃÃo sobre suas curvaturas de ordem superior, a fim de obtermos resultados tipo-Bernstein. As ferramentas analÃticas que utilizamos sÃo algumas versÃes do princÃpio do mÃximo. No caso em que o ambiente à um espaÃo-tempo de Robertson-Walker generalizado satisfazendo a condiÃÃo forte de convergÃncia nula, obtemos novas caracterizaÃÃes de hipersuperfÃcies tipo-espaÃo totalmente geodÃsicas. AlÃm disso, obtemos uma estimativa inferior do Ãndice mÃnimo de nulidade relativa quando a hipersuperfÃcie tipo-espaÃo à r-mÃxima ou quando existem duas curvaturas mÃdias de ordem superior consecutivas que nÃo mudam de sinal. TambÃm obtemos resultados de rigidez e novas caracterizaÃÃes de hipersuperfÃcies totalmente umbÃlicas, supondo que estas possuem alguma curvatura de ordem superior constante e que o ambiente à um espaÃo-tempo de Robertson-Walker satisfazendo a condiÃÃo de convergÃncia nula. Aplicamos tais resultados aos espaÃo de de Sitter e anti-de Sitter. Finalmente, provamos um teorema tipo-Bernstein para hipersuperfÃcies completas, com curvatura mÃdia constante, imersas em um produto riemanniano. / In this thesis, we study complete space-like hypersurfaces immersed in semi-Riemannian manifolds, satisfying some conditions on their higher-order mean curvatures in order to get Bernstein-type results. Analytical tools we use are some versions of the maximum principle. When the ambient space is a generalized Robertson-Walker spacetime which is supposed to obey the strong null convergence condition, we establish new characterizations of totally geodesic spacelike hypersurfaces. Furthermore, we obtain a lower estimate the minimum index of relative nullity when the space-like hypersurface is r-maximal, or when there are two consecutive higher-order mean curvatures that do not change sin. We also obtain rigidity results and new characterizations of totally umbilical hypersurfaces, assuming they have some constant higher-order mean curvature, and that the ambient space is a spacetime Robertson-Walker obeying the null convergence condition. These results are applied to the de Sitter and anti-de Sitter spaces. Finally, we prove a Bernstein-type theorem for constant mean curvature complete hypersurfaces immersed in a riemannian product.
3

Codigos esfericos com simetrias ciclicas / Spherical codes with cyclic symmetries

Siqueira, Rogério Monteiro de 18 May 2006 (has links)
Orientador : Sueli Irene Rodrigues Costa / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-06T14:39:59Z (GMT). No. of bitstreams: 1 Siqueira_RogerioMonteirode_D.pdf: 1994309 bytes, checksum: 7735d63966bc2d9b5c84ccac989c3289 (MD5) Previous issue date: 2006 / Resumo: Códigos esféricos euclidianos com simetrias são órbitas finitas de grupos de matrizes ortogonais. Tais códigos são também conhecidos como códigos de grupo. Neste trabalho, os códigos de grupo comutativo em dimensão par são caracterizados sobre toros planos, subvariedades da esfera. Em particular, se o grupo de matrizes for cíclico, o código gerado está contido em um nó que se enrola em um tora. Se a dimensão for ímpar, todo código de grupo comutativo mora em anti-primas cujas bases estão contidas em dois toros planos. Tal caracterização permitiu a construção de limitantes para a cardinalidade destas constelações de pontos em termos da distância mínima destes códigos e da densidade de empacotamento de um reticulado associado. Utilizando o método de Biglieri e Elia, que procura o vetor inicial cujo respectivo código de grupo cíclico tem a melhor distância mínima, apresentamos também os melhores códigos de grupo cíclico em dimensão quatro até 100 pontos / Abstract: Euclidean spherical codes with symmetries are orbits of finite orthogonal matrix groups. These codes are also known as group codes. ln this work, the commutative group codes in even dimensions are viewed on flat tori, which are submanifolds of the sphere. Also, if the matrix group is cyclic, the generated code lies on a knot which wraps around a torus. If the dimension is odd, every commutative group code lies on an anti-prism whose bases are contained in two flat tori. This interpretation lead us to build upper bounds for the cardinality of these constellations involving their minimum distance and the packing density of an associated lattice. Using a method by Biglieri and Elia, which searchs the initial vector for a cyclic group in order to achieve the best minimum distance, we also present the best cyclic group codes in dimension four up to 100 points / Doutorado / Matematica / Doutor em Matemática
4

Orthogonal Separation of The Hamilton-Jacobi Equation on Spaces of Constant Curvature

Rajaratnam, Krishan 21 April 2014 (has links)
What is in common between the Kepler problem, a Hydrogen atom and a rotating black- hole? These systems are described by different physical theories, but much information about them can be obtained by separating an appropriate Hamilton-Jacobi equation. The separation of variables of the Hamilton-Jacobi equation is an old but still powerful tool for obtaining exact solutions. The goal of this thesis is to present the theory and application of a certain type of conformal Killing tensor (hereafter called concircular tensor) to the separation of variables problem. The application is to spaces of constant curvature, with special attention to spaces with Euclidean and Lorentzian signatures. The theory includes the general applicability of concircular tensors to the separation of variables problem and the application of warped products to studying Killing tensors in general and separable coordinates in particular. Our first main result shows how to use these tensors to construct a special class of separable coordinates (hereafter called Kalnins-Eisenhart-Miller (KEM) coordinates) on a given space. Conversely, the second result generalizes the Kalnins-Miller classification to show that any orthogonal separable coordinates in a space of constant curvature are KEM coordinates. A closely related recursive algorithm is defined which allows one to intrinsically (coordinate independently) search for KEM coordinates which separate a given (natural) Hamilton-Jacobi equation. This algorithm is exhaustive in spaces of constant curvature. Finally, sufficient details are worked out, so that one can apply these procedures in spaces of constant curvature using only (linear) algebraic operations. As an example, we apply the theory to study the separability of the Calogero-Moser system.

Page generated in 0.1 seconds