• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molten Regolith Electrolysis Processing for Lunar ISRU: Financial and Physics Analysis of SpaceX Starship Transportation

Harper, Cheyenne 01 January 2021 (has links)
The purpose of the following research is to explore molten regolith electrolysis (MRE) methodology for in-situ resource utilization (ISRU) of Highlands lunar regolith, to be explored during the initial Artemis missions. An analysis of potential commercial launch providers for MRE-equipment based on technology-readiness level (TRL), payload mass support, and $ USD/kg payload price is provided. SpaceX is ultimately proposed as a launch provider of MRE equipment following multi-factorial analysis, with the SpaceX Starship human landing system (HLS) variant proposed for supporting MRE payload. Finally, customers of regolith-derived oxygen, aluminum, and silicon are distinguished to form the business case for operating MRE equipment on the lunar surface.
2

Multiple Asteroid Retrieval Mission

Gargioni, Gustavo 11 May 2020 (has links)
In this thesis, the possibility of enabling space-mining for the upcoming decade is explored. Making use of recently-proven reusable rockets, we envision a fleet of spacecraft capable of reaching Near-Earth asteroids. To analyze this idea, the goal of this problem is to maximize the asteroid mass retrieved within a spacecraft max life span. Explicitly, the maximum lifetime of the spacecraft fleet is set at 30 years. A fuel supply-chain is proposed and designed so that each spacecraft is refueled before departing for each asteroid. To maximize access to the number of asteroids and retrievable mass for each mission, we propose launching each mission from an orbit with low escape velocity. The L2-Halo orbit at the libration point in the Earth-Moon system was selected due to its easy access from Low-Earth Orbit and for a cislunar synergy with NASA Gateway. Using data from NASA SmallBody and CNEOS databases, we investigated NEAs in the period between 2030 and 2060 could be captured in the ecliptic plane and returned to L2-Halo with two approaches, MARM-1 and MARM-2. Together, these databases provide all information for every asteroid's close approach known today. Returning the asteroid as a whole is explored in the MARM-1 method, while MARM-2 evaluates the possibility of reaching larger asteroids and returning a fragment of their masses, such that it optimizes the available cargo weight per time of flight of each mission. The following results are compared with previous work from the community. The results show a 96% reduction in the cost per kg, with an enormous increase in retrieved mass. With these results, this thesis shows that not solely energy or dynamic optimization will be responsible for proving space mining feasibility, but rather a combination of those and business best practices. Proving feasibility for space mining is a complex and immense problem. Although this thesis opens new possibilities for future work on the field and sparkes the interest of private endeavors, the final solution for this problem still requires additional exploration. / M.S. / In this thesis, the possibility of enabling space-mining for the upcoming decade is explored. Making use of recently-proven reusable rockets, we envision a fleet of spacecraft capable of reaching Near-Earth asteroids, NEAs. To analyze this idea, the goal of this problem is to maximize the asteroid mass retrieved within a spacecraft max life span. Explicitly, the maximum lifetime of the spacecraft fleet is set at 30 years. A fuel supply-chain is proposed and designed so that each spacecraft is refueled before departing for each asteroid. To maximize access to the number of asteroids and retrievable mass for each mission, we propose launching each mission from an orbit with low escape velocity. A location after the Moon, at the L2-Halo orbit, was selected due to its easy access from Low-Earth Orbit and for a synergy with the proposed new space station at the Moon orbit. Using data from NASA databases, we investigated the asteroids in the period between 2030 and 2060 that could be captured and returned with two approaches, MARM-1 and MARM-2. Together, these databases provide all information for every asteroid's close approach known today. Returning the asteroid as a whole is explored in the MARM-1 method, while MARM-2 evaluates the possibility of reaching larger asteroids and returning a fragment of their masses, such that it optimizes the available cargo weight per time of flight of each mission. The following results are compared with previous work from the community. The results show a 96% reduction in the cost per kg, with an enormous increase in retrieved mass. With these results, this thesis shows that not solely energy or dynamic optimization will be responsible for proving space mining feasibility, but rather a combination of those and business best practices. Proving feasibility for space mining is a complex and immense problem. Although this thesis opens new possibilities for future work on the field and sparkes the interest of private endeavors, the final solution for this problem still requires additional exploration.

Page generated in 0.0288 seconds