Spelling suggestions: "subject:"pam (6electronic main) -- 3prevention."" "subject:"pam (6electronic main) -- b.prevention.""
1 |
Models to Combat Email Spam Botnets and Unwanted Phone CallsHusna, Husain 05 1900 (has links)
With the amount of email spam received these days it is hard to imagine that spammers act individually. Nowadays, most of the spam emails have been sent from a collection of compromised machines controlled by some spammers. These compromised computers are often called bots, using which the spammers can send massive volume of spam within a short period of time. The motivation of this work is to understand and analyze the behavior of spammers through a large collection of spam mails. My research examined a the data set collected over a 2.5-year period and developed an algorithm which would give the botnet features and then classify them into various groups. Principal component analysis was used to study the association patterns of group of spammers and the individual behavior of a spammer in a given domain. This is based on the features which capture maximum variance of information we have clustered. Presence information is a growing tool towards more efficient communication and providing new services and features within a business setting and much more. The main contribution in my thesis is to propose the willingness estimator that can estimate the callee's willingness without his/her involvement, the model estimates willingness level based on call history. Finally, the accuracy of the proposed willingness estimator is validated with the actual call logs.
|
2 |
Using Spammers' Computing Resources for Volunteer ComputingBui, Thai Le Quy 13 March 2014 (has links)
Spammers are continually looking to circumvent counter-measures seeking to slow them down. An immense amount of time and money is currently devoted to hiding spam, but not enough is devoted to effectively preventing it. One approach for preventing spam is to force the spammer's machine to solve a computational problem of varying difficulty before granting access. The idea is that suspicious or problematic requests are given difficult problems to solve while legitimate requests are allowed through with minimal computation. Unfortunately, most systems that employ this model waste the computing resources being used, as they are directed towards solving cryptographic problems that provide no societal benefit. While systems such as reCAPTCHA and FoldIt have allowed users to contribute solutions to useful problems interactively, an analogous solution for non-interactive proof-of-work does not exist. Towards this end, this paper describes MetaCAPTCHA and reBOINC, an infrastructure for supporting useful proof-of-work that is integrated into a web spam throttling service. The infrastructure dynamically issues CAPTCHAs and proof-of-work puzzles while ensuring that malicious users solve challenging puzzles. Additionally, it provides a framework that enables the computational resources of spammers to be redirected towards meaningful research. To validate the efficacy of our approach, prototype implementations based on OpenCV and BOINC are described that demonstrate the ability to harvest spammer's resources for beneficial purposes.
|
Page generated in 0.1394 seconds