• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient and Adaptive Decentralized Sparse Gaussian Process Regression for Environmental Sampling Using Autonomous Vehicles

Norton, Tanner A. 27 June 2022 (has links)
In this thesis, I present a decentralized sparse Gaussian process regression (DSGPR) model with event-triggered, adaptive inducing points. This DSGPR model brings the advantages of sparse Gaussian process regression to a decentralized implementation. Being decentralized and sparse provides advantages that are ideal for multi-agent systems (MASs) performing environmental modeling. In this case, MASs need to model large amounts of information while having potential intermittent communication connections. Additionally, the model needs to correctly perform uncertainty propagation between autonomous agents and ensure high accuracy on the prediction. For the model to meet these requirements, a bounded and efficient real-time sparse Gaussian process regression (SGPR) model is needed. I improve real-time SGPR models in these regards by introducing an adaptation of the mean shift and fixed-width clustering algorithms called radial clustering. Radial clustering enables real-time SGPR models to have an adaptive number of inducing points through an efficient inducing point selection process. I show how this clustering approach scales better than other seminal Gaussian process regression (GPR) and SGPR models for real-time purposes while attaining similar prediction accuracy and uncertainty reduction performance. Furthermore, this thesis addresses common issues inherent in decentralized frameworks such as high computation costs, inter-agent message bandwidth restrictions, and data fusion integrity. These challenges are addressed in part through performing maximum consensus between local agent models which enables the MAS to gain the advantages of decentral- ization while keeping data fusion integrity. The inter-agent communication restrictions are addressed through the contribution of two message passing heuristics called the covariance reduction heuristic and the Bhattacharyya distance heuristic. These heuristics enable user to reduce message passing frequency and message size through the Bhattacharyya distance and properties of spatial kernels. The entire DSGPR framework is evaluated on multiple simulated random vector fields. The results show that this framework effectively estimates vector fields using multiple autonomous agents. This vector field is assumed to be a wind field; however, this framework may be applied to the estimation of other scalar or vector fields (e.g., fluids, magnetic fields, electricity, etc.).
2

Unsupervised Spatio-Temporal Activity Learning and Recognition in a Stream Processing Framework / Oövervakad maskininlärning och klassificering av spatio-temporala aktiviteter i ett ström-baserat ramverk

Tiger, Mattias January 2014 (has links)
Learning to recognize and predict common activities, performed by objects and observed by sensors, is an important and challenging problem related both to artificial intelligence and robotics.In this thesis, the general problem of dynamic adaptive situation awareness is considered and we argue for the need for an on-line bottom-up approach.A candidate for a bottom layer is proposed, which we consider to be capable of future extensions that can bring us closer towards the goal.We present a novel approach to adaptive activity learning, where a mapping between raw data and primitive activity concepts are learned and continuously improved on-line and unsupervised. The approach takes streams of observations of objects as input and learns a probabilistic representation of both the observed spatio-temporal activities and their causal relations. The dynamics of the activities are modeled using sparse Gaussian processes and their causal relations using probabilistic graphs.The learned model supports both estimating the most likely activity and predicting the most likely future (and past) activities. Methods and ideas from a wide range of previous work are combined to provide a uniform and efficient way to handle a variety of common problems related to learning, classifying and predicting activities.The framework is evaluated both by learning activities in a simulated traffic monitoring application and by learning the flight patterns of an internally developed autonomous quadcopter system. The conclusion is that our framework is capable of learning the observed activities in real-time with good accuracy.We see this work as a step towards unsupervised learning of activities for robotic systems to adapt to new circumstances autonomously and to learn new activities on the fly that can be detected and predicted immediately. / Att lära sig känna igen och förutsäga vanliga aktiviteter genom att analysera sensordata från observerade objekt är ett viktigt och utmanande problem relaterat både till artificiell intelligens och robotik. I det här exjobbet studerar vi det generella problemet rörande adaptiv situationsmedvetenhet, och vi argumenterar för behovet av ett angreppssätt som arbetar on-line (direkt på ny data) och från botten upp. Vi föreslår en möjlig lösning som vi anser bereder väg för framtida utökningar som kan ta oss närmare detta mål. Vi presenterar en ny metod för adaptiv aktivitetsinlärning, där en mappning mellan rå-data och grundläggande aktivitetskoncept, samt deras kausala relationer, lärs och är kontinuerligt förfinade utan behov av övervakning. Tillvägagångssättet bygger på användandet av strömmar av observationer av objekt, och inlärning sker av en statistik representation för både de observerade spatio-temporala aktiviteterna och deras kausala relationer. Aktiviteternas dynamik modelleras med hjälp av glesa Gaussiska processer och för att modellera aktiviteternas kausala samband används probabilistiska grafer. Givet observationer av ett objekt så stödjer de inlärda modellerna både skattning av den troligaste aktiviteten och förutsägelser av de mest troliga framtida (och dåtida) aktiviteterna utförda. Metoder och idéer från en rad olika tidigare arbeten kombineras på ett sätt som möjliggör ett enhetligt och effektivt sätt att hantera en mängd vanliga problem relaterade till inlärning, klassificering och förutsägelser av aktiviteter. Ramverket är utvärderat genom att dels inlärning av aktiviteter i en simulerad trafikövervakningsapplikation och dels genom inlärning av flygmönster hos ett  internt utvecklad quadrocoptersystem. Slutsatsen är att vårt ramverk klarar av att lära sig de observerade aktivisterna i realtid med god noggrannhet. Vi ser detta arbete som ett steg mot oövervakad inlärning av aktiviteter för robotsystem, så att dessa kan anpassa sig till nya förhållanden autonomt och lära sig nya aktiviteter direkt och som då dessutom kan börja detekteras och förutsägas omedelbart.
3

Evaluation of probabilistic representations for modeling and understanding shape based on synthetic and real sensory data / Utvärdering av probabilistiska representationer för modellering och förståelse av form baserat på syntetisk och verklig sensordata

Zarzar Gandler, Gabriela January 2017 (has links)
The advancements in robotic perception in the recent years have empowered robots to better execute tasks in various environments. The perception of objects in the robot work space significantly relies on how sensory data is represented. In this context, 3D models of object’s surfaces have been studied as a means to provide useful insights on shape of objects and ultimately enhance robotic perception. This involves several challenges, because sensory data generally presents artifacts, such as noise and incompleteness. To tackle this problem, we employ Gaussian Process Implicit Surface (GPIS), a non-parametric probabilistic reconstruction of object’s surfaces from 3D data points. This thesis investigates different configurations for GPIS, as a means to tackle the extraction of shape information. In our approach we interpret an object’s surface as the level-set of an underlying sparse Gaussian Process (GP) with variational formulation. Results show that the variational formulation for sparse GP enables a reliable approximation to the full GP solution. Experiments are performed on a synthetic and a real sensory data set. We evaluate results by assessing how close the reconstructed surfaces are to the ground-truth correspondences, and how well objects from different categories are clustered based on the obtained representation. Finally we conclude that the proposed solution derives adequate surface representations to reason about object shape and to discriminate objects based on shape information. / Framsteg inom robotperception de senaste åren har resulterat i robotar som är bättre på attutföra uppgifter i olika miljöer. Perception av objekt i robotens arbetsmiljö är beroende avhur sensorisk data representeras. I det här sammanhanget har 3D-modeller av objektytorstuderats för att ge användbar insikt om objektens form och i slutändan bättre robotperception. Detta innebär flera utmaningar, eftersom sensoriska data ofta innehåller artefakter, såsom brus och brist på data. För att hantera detta problem använder vi oss av Gaussian Process Implicit Surface (GPIS), som är en icke-parametrisk probabilistisk rekonstruktion av ett objekts yta utifrån 3D-punkter. Detta examensarbete undersöker olika konfigurationer av GPIS för att på detta sätt kunna extrahera forminformation. I vår metod tolkar vi ett objekts yta som nivåkurvor hos en underliggande gles variational Gaussian Process (GP) modell. Resultat visar att en gles variational GP möjliggör en tillförlitlig approximation av en komplett GP-lösningen. Experiment utförs på ett syntetisk och ett reellt sensorisk dataset. Vi utvärderar resultat genom att bedöma hur nära de rekonstruerade ytorna är till grundtruth- korrespondenser, och hur väl objektkategorier klustras utifrån den erhållna representationen. Slutligen konstaterar vi att den föreslagna lösningen leder till tillräckligt goda representationer av ytor för tolkning av objektens form och för att diskriminera objekt utifrån forminformation.

Page generated in 0.0933 seconds