Spelling suggestions: "subject:"lparse 1inear aprediction"" "subject:"lparse 1inear iprediction""
1 |
Anomaly Detection in Diagnostics Data with Natural Fluctuations / Anomalidetektering i diagnostikdata med naturliga variationerSundberg, Jesper January 2015 (has links)
In this thesis, the red hot topic anomaly detection is studied, which is a subtopic in machine learning. The company, Procera Networks, supports several broadband companies with IT-solutions and would like to detected errors in these systems automatically. This thesis investigates and devises methods and algorithms for detecting interesting events in diagnostics data. Events of interest include: short-term deviations (a deviating point), long-term deviations (a distinct trend) and other unexpected deviations. Three models are analyzed, namely Linear Predictive Coding, Sparse Linear Prediction and Wavelet Transformation. The final outcome is determined by the gap to certain thresholds. These thresholds are customized to fit the model as well as possible. / I den här rapporten kommer det glödheta området anomalidetektering studeras, vilket tillhör ämnet Machine Learning. Företaget där arbetet utfördes på heter Procera Networks och jobbar med IT-lösningar inom bredband till andra företag. Procera önskar att kunna upptäcka fel hos kunderna i dessa system automatiskt. I det här projektet kommer olika metoder för att hitta intressanta företeelser i datatraffiken att genomföras och forskas kring. De mest intressanta företeelserna är framfärallt snabba avvikelser (avvikande punkt) och färändringar äver tid (trender) men också andra oväntade mänster. Tre modeller har analyserats, nämligen Linear Predictive Coding, Sparse Linear Prediction och Wavelet Transform. Det slutgiltiga resultatet från modellerna är grundat på en speciell träskel som är skapad fär att ge ett så bra resultat som mäjligt till den undersäkta modellen..
|
2 |
Nouvelles méthodes multi-échelles pour l'analyse non-linéaire de la parole / Novel multiscale methods for nonlinear speech analysisKhanagha, Vahid 16 January 2013 (has links)
Cette thèse présente une recherche exploratoire sur l'application du Formalisme Microcanonique Multiéchelles (FMM) à l'analyse de la parole. Dérivé de principes issus en physique statistique, le FMM permet une analyse géométrique précise de la dynamique non linéaire des signaux complexes. Il est fondé sur l'estimation des paramètres géométriques locaux (les exposants de singularité) qui quantifient le degré de prédictibilité à chaque point du signal. Si correctement définis est estimés, ils fournissent des informations précieuses sur la dynamique locale de signaux complexes. Nous démontrons le potentiel du FMM dans l'analyse de la parole en développant: un algorithme performant pour la segmentation phonétique, un nouveau codeur, un algorithme robuste pour la détection précise des instants de fermeture glottale, un algorithme rapide pour l’analyse par prédiction linéaire parcimonieuse et une solution efficace pour l’approximation multipulse du signal source d'excitation. / This thesis presents an exploratory research on the application of a nonlinear multiscale formalism, called the Microcanonical Multiscale Formalism (the MMF), to the analysis of speech signals. Derived from principles in Statistical Physics, the MMF allows accurate analysis of the nonlinear dynamics of complex signals. It relies on the estimation of local geometrical parameters, the singularity exponents (SE), which quantify the degree of predictability at each point of the signal domain. When correctly defined and estimated, these exponents can provide valuable information about the local dynamics of complex signals and has been successfully used in many applications ranging from signal representation to inference and prediction.We show the relevance of the MMF to speech analysis and develop several applications to show the strength and potential of the formalism. Using the MMF, in this thesis we introduce: a novel and accurate text-independent phonetic segmentation algorithm, a novel waveform coder, a robust accurate algorithm for detection of the Glottal Closure Instants, a closed-form solution for the problem of sparse linear prediction analysis and finally, an efficient algorithm for estimation of the excitation source signal.
|
Page generated in 0.0678 seconds