• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 3
  • 1
  • Tagged with
  • 24
  • 24
  • 9
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Approches bayésiennes non paramétriques et apprentissage de dictionnaire pour les problèmes inverses en traitement d'image / Bayesian nonparametrics approaches and dictionary learning for inverse problems in image processing

Dang, Hong-Phuong 01 December 2016 (has links)
L'apprentissage de dictionnaire pour la représentation parcimonieuse est bien connu dans le cadre de la résolution de problèmes inverses. Les méthodes d'optimisation et les approches paramétriques ont été particulièrement explorées. Ces méthodes rencontrent certaines limitations, notamment liées au choix de paramètres. En général, la taille de dictionnaire doit être fixée à l'avance et une connaissance des niveaux de bruit et éventuellement de parcimonie sont aussi nécessaires. Les contributions méthodologies de cette thèse concernent l'apprentissage conjoint du dictionnaire et de ces paramètres, notamment pour les problèmes inverses en traitement d'image. Nous étudions et proposons la méthode IBP-DL (Indien Buffet Process for Dictionary Learning) en utilisant une approche bayésienne non paramétrique. Une introduction sur les approches bayésiennes non paramétriques est présentée. Le processus de Dirichlet et son dérivé, le processus du restaurant chinois, ainsi que le processus Bêta et son dérivé, le processus du buffet indien, sont décrits. Le modèle proposé pour l'apprentissage de dictionnaire s'appuie sur un a priori de type Buffet Indien qui permet d'apprendre un dictionnaire de taille adaptative. Nous détaillons la méthode de Monte-Carlo proposée pour l'inférence. Le niveau de bruit et celui de la parcimonie sont aussi échantillonnés, de sorte qu'aucun réglage de paramètres n'est nécessaire en pratique. Des expériences numériques illustrent les performances de l'approche pour les problèmes du débruitage, de l'inpainting et de l'acquisition compressée. Les résultats sont comparés avec l'état de l'art.Le code source en Matlab et en C est mis à disposition. / Dictionary learning for sparse representation has been widely advocated for solving inverse problems. Optimization methods and parametric approaches towards dictionary learning have been particularly explored. These methods meet some limitations, particularly related to the choice of parameters. In general, the dictionary size is fixed in advance, and sparsity or noise level may also be needed. In this thesis, we show how to perform jointly dictionary and parameter learning, with an emphasis on image processing. We propose and study the Indian Buffet Process for Dictionary Learning (IBP-DL) method, using a bayesian nonparametric approach.A primer on bayesian nonparametrics is first presented. Dirichlet and Beta processes and their respective derivatives, the Chinese restaurant and Indian Buffet processes are described. The proposed model for dictionary learning relies on an Indian Buffet prior, which permits to learn an adaptive size dictionary. The Monte-Carlo method for inference is detailed. Noise and sparsity levels are also inferred, so that in practice no parameter tuning is required. Numerical experiments illustrate the performances of the approach in different settings: image denoising, inpainting and compressed sensing. Results are compared with state-of-the art methods is made. Matlab and C sources are available for sake of reproducibility.
22

Moderní metody restaurace poškozených audiosignálů / Modern methods for restoration of degraded audiosignals

Mokrý, Ondřej January 2019 (has links)
The master's thesis deals with the problem of restoring a block of missing samples in a digital audio signal. This problem is formulated as an optimization task, which seeks the sparsest time-frequency representation of a signal within the set of feasible reconstructed signals. Several particular formulations are discussed, namely the analyzing and the synthesizing model, both for convex and non-convex approaches. Suitable algorithms are proposed for solving these formulations, and in the convex case, the method is further enhanced by various procedures to compensate for the energy drop in the inpainted signal segment. The proposed algorithms are tested on real recordings, and their performance is shown to be competitive with the state-of-the-art.
23

Restaurace signálu s omezenou okamžitou hodnotou s použitím psychoakustického modelu / Restoration of signals with limited instantaneous value using a psychoacoustic model

Beňo, Tomáš January 2019 (has links)
The master's thesis deals with the restoration of audio signals that have been damaged by clipping. Used methods are based on sparse representations of signals. The introduction of the thesis explains the issue of clipping and mentions the list of already existing methods that solve declipping, which are followed by the thesis. In the next chapter, the necessary theory of sparse representations and the proximal algorithms is described, including specific representatives from the category of convex optimization problems. The thesis contains declipping algorithm implemented in Matlab software environment. Chosen method for solving the task uses the Condat algorithm or Generic proximal algorithm for convex optimization and solves minimization of sum of three convex functions. The result of the thesis is five versions of algorithm and three of them have implemented psychoacoustic model for results improvement. For each version has been found optimal setting of parameters. The restoration quality results are evaluated using objective measurements like SDR and PEMO-Q and also using subjective listening test.
24

Optimization framework for large-scale sparse blind source separation / Stratégies d'optimisation pour la séparation aveugle de sources parcimonieuses grande échelle

Kervazo, Christophe 04 October 2019 (has links)
Lors des dernières décennies, la Séparation Aveugle de Sources (BSS) est devenue un outil de premier plan pour le traitement de données multi-valuées. L’objectif de ce doctorat est cependant d’étudier les cas grande échelle, pour lesquels la plupart des algorithmes classiques obtiennent des performances dégradées. Ce document s’articule en quatre parties, traitant chacune un aspect du problème: i) l’introduction d’algorithmes robustes de BSS parcimonieuse ne nécessitant qu’un seul lancement (malgré un choix d’hyper-paramètres délicat) et fortement étayés mathématiquement; ii) la proposition d’une méthode permettant de maintenir une haute qualité de séparation malgré un nombre de sources important: iii) la modification d’un algorithme classique de BSS parcimonieuse pour l’application sur des données de grandes tailles; et iv) une extension au problème de BSS parcimonieuse non-linéaire. Les méthodes proposées ont été amplement testées, tant sur données simulées que réalistes, pour démontrer leur qualité. Des interprétations détaillées des résultats sont proposées. / During the last decades, Blind Source Separation (BSS) has become a key analysis tool to study multi-valued data. The objective of this thesis is however to focus on large-scale settings, for which most classical algorithms fail. More specifically, it is subdivided into four sub-problems taking their roots around the large-scale sparse BSS issue: i) introduce a mathematically sound robust sparse BSS algorithm which does not require any relaunch (despite a difficult hyper-parameter choice); ii) introduce a method being able to maintain high quality separations even when a large-number of sources needs to be estimated; iii) make a classical sparse BSS algorithm scalable to large-scale datasets; and iv) an extension to the non-linear sparse BSS problem. The methods we propose are extensively tested on both simulated and realistic experiments to demonstrate their quality. In-depth interpretations of the results are proposed.

Page generated in 0.1159 seconds