• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A clustering-based approach for discovering interesting places in trajectories / Uma abordagem baseada em clusterização para a descoberta de lugares de interesse em trajetórias

Palma, Andrey Luis Tietbohl January 2008 (has links)
Por causa da grande quantidade de dados de trajetórias producidos por dispositivos móveis, existe um aumento crescente das necessidades de mecanismos para extrair conhecimento a partir desses dados. A maioria dos trabalhos existentes focam nas propriedades geometricas das trajetorias, mas recentemente surgiu o conceito de trajetórias semânticas, nas quais a informação da geografia por baixo da trajetória é integrada aos pontos da trajetória. Nesse novo conceito, trajetórias são observadas como um conjunto de stops e moves, onde stops são as partes mais importantes da trajetória. Os stops e moves são computados pela intersecção das trajetórias com o conjunto de objetos geográficos dados pelo usuário. Nessa dissertação será apresentada uma solução alternativa a descoberta de stops, com a capacidade de achar lugares de interesse que não são esperados pelo usuário. A solução proposta é um método de clusterização espaço-temporal, baseado na velocidade, para ser aplicado em uma trajetória. Foram comparadas duas abordagens diferentes com experimentos baseados em dados reais e mostrado que a computação de stops usando o conceito de velocidade pode ser interessante para várias applicações. / Because of the large amount of trajectory data produced by mobile devices, there is an increasing need for mechanisms to extract knowledge from this data. Most existing works have focused on the geometric properties of trajectories, but recently emerged the concepts of semantic trajectories, in which the background geographic information is integrated to trajectory sample points. In this new concept, trajectories are observed as a set of stops and moves, where stops are the most important parts of the trajectory. Stops and moves have been computed by testing the intersection of trajectories with a set of geographic objects given by the user. In this dissertation we present an alternative solution with the capability of finding interesting places that are not expected by the user. The proposed solution is a spatio-temporal clustering method, based on speed, to work with single trajectories. We compare the two different approaches with experiments on real data and show that the computation of stops using the concept of speed can be interesting for several applications.
2

A clustering-based approach for discovering interesting places in trajectories / Uma abordagem baseada em clusterização para a descoberta de lugares de interesse em trajetórias

Palma, Andrey Luis Tietbohl January 2008 (has links)
Por causa da grande quantidade de dados de trajetórias producidos por dispositivos móveis, existe um aumento crescente das necessidades de mecanismos para extrair conhecimento a partir desses dados. A maioria dos trabalhos existentes focam nas propriedades geometricas das trajetorias, mas recentemente surgiu o conceito de trajetórias semânticas, nas quais a informação da geografia por baixo da trajetória é integrada aos pontos da trajetória. Nesse novo conceito, trajetórias são observadas como um conjunto de stops e moves, onde stops são as partes mais importantes da trajetória. Os stops e moves são computados pela intersecção das trajetórias com o conjunto de objetos geográficos dados pelo usuário. Nessa dissertação será apresentada uma solução alternativa a descoberta de stops, com a capacidade de achar lugares de interesse que não são esperados pelo usuário. A solução proposta é um método de clusterização espaço-temporal, baseado na velocidade, para ser aplicado em uma trajetória. Foram comparadas duas abordagens diferentes com experimentos baseados em dados reais e mostrado que a computação de stops usando o conceito de velocidade pode ser interessante para várias applicações. / Because of the large amount of trajectory data produced by mobile devices, there is an increasing need for mechanisms to extract knowledge from this data. Most existing works have focused on the geometric properties of trajectories, but recently emerged the concepts of semantic trajectories, in which the background geographic information is integrated to trajectory sample points. In this new concept, trajectories are observed as a set of stops and moves, where stops are the most important parts of the trajectory. Stops and moves have been computed by testing the intersection of trajectories with a set of geographic objects given by the user. In this dissertation we present an alternative solution with the capability of finding interesting places that are not expected by the user. The proposed solution is a spatio-temporal clustering method, based on speed, to work with single trajectories. We compare the two different approaches with experiments on real data and show that the computation of stops using the concept of speed can be interesting for several applications.
3

A clustering-based approach for discovering interesting places in trajectories / Uma abordagem baseada em clusterização para a descoberta de lugares de interesse em trajetórias

Palma, Andrey Luis Tietbohl January 2008 (has links)
Por causa da grande quantidade de dados de trajetórias producidos por dispositivos móveis, existe um aumento crescente das necessidades de mecanismos para extrair conhecimento a partir desses dados. A maioria dos trabalhos existentes focam nas propriedades geometricas das trajetorias, mas recentemente surgiu o conceito de trajetórias semânticas, nas quais a informação da geografia por baixo da trajetória é integrada aos pontos da trajetória. Nesse novo conceito, trajetórias são observadas como um conjunto de stops e moves, onde stops são as partes mais importantes da trajetória. Os stops e moves são computados pela intersecção das trajetórias com o conjunto de objetos geográficos dados pelo usuário. Nessa dissertação será apresentada uma solução alternativa a descoberta de stops, com a capacidade de achar lugares de interesse que não são esperados pelo usuário. A solução proposta é um método de clusterização espaço-temporal, baseado na velocidade, para ser aplicado em uma trajetória. Foram comparadas duas abordagens diferentes com experimentos baseados em dados reais e mostrado que a computação de stops usando o conceito de velocidade pode ser interessante para várias applicações. / Because of the large amount of trajectory data produced by mobile devices, there is an increasing need for mechanisms to extract knowledge from this data. Most existing works have focused on the geometric properties of trajectories, but recently emerged the concepts of semantic trajectories, in which the background geographic information is integrated to trajectory sample points. In this new concept, trajectories are observed as a set of stops and moves, where stops are the most important parts of the trajectory. Stops and moves have been computed by testing the intersection of trajectories with a set of geographic objects given by the user. In this dissertation we present an alternative solution with the capability of finding interesting places that are not expected by the user. The proposed solution is a spatio-temporal clustering method, based on speed, to work with single trajectories. We compare the two different approaches with experiments on real data and show that the computation of stops using the concept of speed can be interesting for several applications.
4

Neighbour discovery and distributed spatio-temporal cluster detection in pocket switched networks

Orlinski, Matthew January 2013 (has links)
Pocket Switched Networks (PSNs) offer a means of infrastructureless inter-human communication by utilising Delay and Disruption Tolerant Networking (DTN) technology. However, creating PSNs involves solving challenges which were not encountered in the Deep Space Internet for which DTN technology was originally intended.End-to-end communication over multiple hops in PSNs is a product of short range opportunistic wireless communication between personal mobile wireless devices carried by humans. Opportunistic data delivery in PSNs is far less predictable than in the Deep Space Internet because human movement patterns are harder to predict than the orbital motion of satellites. Furthermore, PSNs require some scheme for efficient neighbour discovery in order to save energy and because mobile devices in PSNs may be unaware of when their next encounter will take place.This thesis offers novel solutions for neighbour discovery and opportunistic data delivery in PSNs that make practical use of dynamic inter-human encounter patterns.The first contribution is a novel neighbour discovery algorithm for PSNs called PISTONS which relies on a new inter-probe time calculation (IPC) and the bursty encounter patterns of humans to set the time between neighbour discovery scans. The IPC equations and PISTONS also give participants the ability to easily specify their required level of connectivity and energy saving with a single variable.This thesis also contains novel distributed spatio-temporal clustering and opportunistic data delivery algorithms for PSNs which can be used to deliver data over multiple hops. The spatio-temporal clustering algorimths are also used to analyse the social networks and transient groups which are formed when humans interact.

Page generated in 0.1435 seconds