• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of Formic Acid Chemistry and Ignition

Alsewailem, Ahmad 05 1900 (has links)
This thesis investigates the oxidation chemistry and ignition properties of formic acid (FA). The study reports experimental measurements of ignition delay time (IDT) and CO/CO2 time histories during FA oxidation in a shock tube. The initial concentration of FA was measured with a laser to minimize uncertainties arising from its low vapor pressure and tendency to form dimers. Shock tube experiments were carried out at two pressures, around 1.7 and 3.5 bar, and temperatures ranging from 1194 to 1658 K, with two equivalence ratios, 0.72 and 1.47. The results show a noticeable dependence of IDTs on temperature and pressure, while there was insignificant dependence on equivalence ratio. Six kinetic models for FA oxidation available in the literature were tested against the obtained data to evaluate their accuracy and suggest potential improvements. We found that 4 models performed well in predicting IDTs and CO/CO2 profiles with some overprediction at certain conditions. Sensitivity analysis revealed that the IDTs of FA are governed by unimolecular decomposition, H abstraction, and radical consumption (HOCO) reactions. The concentration of HO2 is higher at low temperatures, which is favorable for the system’s reactivity as it makes IDTs more sensitive to the reaction HOCHO + HO2 = H2O2 + HOCO. CO formation is controlled by two reactions: CO + OH = HOCO and HOCHO (+M) = CO + H2O, while the second reaction is more pronounced at high temperatures. Moreover, the dissociation of HOCO is faster at higher pressures, leading to higher initial CO concentrations. The formation of CO2 is determined by CO + OH = CO2 + H, while at higher temperatures, HOCHO (+M) = CO2 + H2 (+M) becomes more important, resulting in higher initial CO2 concentrations.

Page generated in 0.0437 seconds