• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of Leukocyte-specific protein 1 in acute lung inflammation

2013 September 1900 (has links)
Leukocyte-specific protein 1 (LSP1), an F-actin binding protein, is involved in neutrophil recruitment into peritoneum. Because mechanisms of excessive migration of activated neutrophils into inflamed lungs, credited with tissue damage, are not fully understood, we explored the hitherto unknown expression and role of LSP1 in neutrophil migration in a mouse model of acute lung inflammation. We induced acute lung inflammation through intranasal E. coli lipopolysacharide (LPS) (80μg) in wild-type 129/SvJ (WT) and LSP1 deficient (LSP1-/-) mice. WT (n=10) and LSP1-/- (n=11) mice showed significant neutrophilia and more neutrophils in bronchoalveolar lavage (BAL) at 9 hour post-LPS challenge compared to respective saline-treated controls (WT=7; LSP1-/-=10). LPS treatment induced more BAL neutrophils (P<0.001), myeloperoxidase concentrations and Gr-1+ neutrophils in lung tissues in WT mice compared to LSP1-/- mice. Lung myeloperoxidase and Gr-1+ (P<0.05) were higher in LPS-treated WT compared to the LSP1-/- mice. Lung tissue and BAL fluid KC, MCP-1, MIP-1α and MIP-1β concentration and vascular permeability were not different between LPS-treated WT and LSP1-/- mice but TNF-α concentration was higher in LPS-treated WT mice. Hematoxylin and eosin staining showed more septal congestion in LPS-treated WT mice compared to LSP1-/- mice. LSP1 expression was increased in lungs from LPS-treated mice compared to saline control. The autopsied lungs from septic humans, compared to their respective controls, showed increased expression of LSP1. These data show that LSP1 expression is modulated in acute lung inflammation and that LSP1 deficiency reduces neutrophil migration into acute lung inflammation.
2

SUPPRESSION OF ANTI-TUMOR IMMUNITY IN CHRONIC LYMPHOCYTIC LEUKEMIA VIA INTERLEUKIN-10 PRODUCTION

Alhakeem, Sara 01 January 2017 (has links)
The most common human leukemia is B-cell chronic lymphocytic leukemia (B-CLL), which is characterized by a progressive accumulation of abnormal B-lymphocytes in blood, bone marrow and secondary lymphoid organs. Typically disease progression is slow, but as the number of leukemic cells increases, they interfere with the production of other important blood cells, causing the patients to be in an immunosuppressive state. To study the basis of this immunoregulation, we used cells from the transgenic Eμ-TCL1 mouse, which spontaneously develop B-CLL due to a B-cell specific expression of the oncogene, TCL1. Previously we showed that Eμ-TCL1 CLL cells constitutively produce an anti-inflammatory cytokine, IL-10. Here we studied the role of IL-10 in CLL cell survival in vitro and the development of CLL in vivo. We found that neutralization of IL-10 using anti-IL-10 antibodies or blocking the IL-10 receptor (IL-10R) using anti-IL-10R antibodies did not affect the survival of CLL cells in vitro. On the other hand, adoptively transferred Eμ-TCL1 cells grew at a slower rate in IL-10R KO mice vs. wild type (WT) mice. There was a significant reduction in CLL cell engraftment in the spleen, bone marrow, peritoneal cavity and liver of the IL-10R KO compared to WT mice. Further studies revealed that IL-10 could be playing a role in the tumor microenvironment possibly by affecting anti-tumor immunity. This was seen by a reduction in the activation of CD8+ T cells as well as a significantly lower production of IFN-γ by CD4+ T cells purified from CLL-injected WT mice compared to those purified from CLL-injected IL-10R KO mice. Also CLL-primed IL-10R null T cells were more effective than those from similarly CLL-primed wild type mice in controlling CLL growth in immunodeficient recipient mice. These studies demonstrate that CLL cells suppress host anti-tumor immunity via IL-10 production. This led us to investigate possible mechanisms by which IL-10 is produced. We found a novel role of B-cell receptor (BCR) signaling pathway in constitutive IL-10 secretion. Inhibition of Src or Syk family kinases reduces the constitutive IL-10 production by Eμ-TCL1 cells in a dose dependent manner. We identified the transcription factor Sp1 as a novel regulator of IL-10 production by CLL cells and that it is regulated by BCR signaling via the Syk/MAPK pathway.

Page generated in 0.0355 seconds