Spelling suggestions: "subject:"spectroscopie atmosphérique"" "subject:"pectroscopie atmosphérique""
1 |
Insights into the diversity of exoplanet atmospheres in the Era of JWSTRadica, Michael 07 1900 (has links)
De la religion à la science, la quête de compréhension de notre place dans l’univers est l’un des moteurs fondamentaux du progrès humain. Depuis la découverte de la première exoplanète autour d’une étoile de la séquence principale au milieu des années 1990, le nombre de systèmes exoplanétaires a explosé pour atteindre plusieurs milliers. Nous avons même réalisé des études approfondies des atmosphères de nombreux mondes lointains, ce qui nous a permis de découvrir la diversité, jusqu’alors insondable, des planètes qui existent dans la galaxie.
Pour comprendre la place de notre propre système solaire dans le contexte de la population plus large des exoplanètes, il est d’abord essentiel de comprendre la diversité des exoplanètes elles- mêmes. La spectroscopie spatiale à basse résolution a toujours été l’outil de choix pour sonder les atmosphères des exoplanètes et comprendre la physique et la chimie qui régissent leur formation et leur évolution. Au cours des deux ans et demi qui ont suivi son lancement, j’ai contribué aux études des atmosphères d’exoplanètes avec JWST couvrant tout l’espace des paramètres de la population des exoplanètes. Cette thèse contient quatre de ces études, y compris certaines des toutes premières observations d’exoplanètes avec le «Near Infrared Imager and Slitless Spectrograph» (NIRISS) du JWST. Dans le premier travail, j’ai conçu et testé une méthode pour estimer la «fonction d’étalement de point» (PSF) bidimensionnelle d’une observation avec le mode SOSS (Single Object Slitless Spectroscopy) du NIRISS, qui est l’un des principaux modes d’observation des exoplanètes du JWST. Ces PSFs sont une donée critique pour une méthode d’extraction spectrale spécialisée conçue pour traiter les défis techniques spécifiques posés par les observations SOSS. Nous démontrons ensuite que ces PSF empiriques permettent d’obtenir des spectres d’atmosphère plus fidèles que les modèles par défaut.
Dans le second projet, nous présentons l’une des toutes premières observations d’exoplanètes avec JWST NIRISS/SOSS. Ces observations du transit de l’exoplanète WASP-96 b, qui est une Saturne-chaude, montrent des signatures claires de l’absorption de H2O et de K à des abondances à peu près solaires. De plus, nous détectons une pente vers les longueurs d’onde les plus bleues de notre spectre, qui pourrait s’expliquer soit par la diffusion Rayleigh de petites particules d’aérosols, soit par les ailes élargies par la pression de l’élément Na. La possibilité de la diffusion d’aérosols est particulièrement intrigante car les observations précédentes avec Hubble, entre autres, ont conclu
v
que la haute atmosphère de WASP-96 b n’avait pas d’aérosols, malgré les travaux théoriques indiquant qu’elle devrait être uniformément nuageuse.
Le troisième travail présente un spectre de transmission JWST NIRISS/SOSS de l’unique planète ultra-chaude LTT 9779 b; la seule planète connue dans le désert de Neptunes chaudes à avoir conservé une atmosphère primordiale. Notre spectre présente des caractéristiques atténuées qui, combinées à la structure intérieure et aux modèles de synthèse de population, nous permettent de conclure que la planète possède une atmosphère au terminateur qui est nuageuse et de haute métallicité. Un scénario de haute métallicité est cohérent avec les tendances générales dans la population des exoplanètes, ainsi que dans le système solaire. De plus, s’ils sont advectés sur le côté jour, les nuages du terminateur que nous trouvons fournissent une explication naturelle à l’albédo élevé précédemment déduit pour cette planète. Nous supposons que ces nuages peuvent faire partie d’une boucle de rétroaction positive qui sert à diminuer l’efficacité de la perte d’atmosphère sous le rayonnement intense de son étoile hôte, et à aider la survie de LTT 9779 b dans le désert de Neptunes chaudes.
Enfin, nous revenons à LTT 9779 b avec l’étude d’un spectre d’éclipse qui s’étend de l’ultraviolet à l’infrarouge. En combinant les éclipses de NIRISS/SOSS avec des données d’archives ainsi que des observations inédites utilisant les capacités ultraviolettes de Hubble, nous concluons que l’albédo élevé de LTT 9779 b est probablement dû à la réflexion des nuages de MgSiO3 et confirmons que sa structure de température du côté jour n’est pas inversée. Nous entreprenons ensuite une analyse comparative de LTT 9779 b dans le contexte plus large des Jupiters ultra-chaudes, qui ont des températures comparables à LTT 9779 b mais des côtés jours systématiquement dépourvus de nuages et des structures de température inversées. De cette manière nous faisons les premiers pas pour réconcilier cette planète inhabituelle avec la population plus large des mondes ultra-chauds.
Ces travaux, ainsi que les ∼20 autres auxquels j’ai contribué au cours de mon doctorat, dé- montrent les capacités inégalées du JWST pour la caractérisation des atmosphères des exoplanètes. Chaque nouvelle observation nous rapproche un peu plus de la découverte des origines de la di- versité de la population des exoplanètes, ainsi que des différences et similitudes fondamentales entre les différentes «classes» de planètes. Cette thèse met en lumière les contributions que j’ai apportées à cette entreprise au cours de mon doctorat. Le JWST a sans aucun doute fait passer de nombreuses régions de la population des exoplanètes du statut de frontières ambitieuses à celui de véritables cibles d’observation et, par conséquent, la prochaine décennie sera certainement l’une des plus transformatrices de l’histoire de la science exoplanétaire. / From religion to science, the quest to understand our place in the universe is one of the fundamental drivers of human progress. Since the discovery of the first exoplanet around a main sequence star in the mid-1990s, our current count of exoplanetary systems has exploded to several thousands. We have even performed in-depth studies of the atmospheres of many distant worlds, yielding insights into the previously unfathomable diversity of planets that exist in the galaxy.
In order to understand our own solar system’s place in the context of the wider population of exoplanets, it is first essential to understand the diversity of exoplanets themselves. Low-resolution spectroscopy from space has historically been the tool of choice to probe exoplanet atmospheres and gain insights into the physics and chemistry that govern their formation and evolution. In the nearly two and a half years since its launch, I have contributed to JWST atmosphere studies spanning the full parameter space of the exoplanet population. This thesis contains four of these studies, including some of the very first exoplanet observations with JWST’s Near Infrared Imager and Slitless Spectrograph (NIRISS). In the first work, I designed and tested a method to estimate the two-dimensional point spread function (PSF) of an observation with NIRISS’s Single Object Slitless Spectroscopy (SOSS) mode, which is one of the key observing modes for JWST exoplanet observations. These PSFs are a critical input to a specialized spectral extraction method designed to deal with specific technical challenges posed by SOSS observations. We then demonstrate that these empirical PSFs result in higher-fidelity atmosphere spectra than default models.
The second project presents one of the first-ever exoplanet observations with JWST NIRISS/SOSS. These transit observations of the hot-Saturn exoplanet WASP-96 b show clear signatures due to absorption of H2O and K at roughly solar abundances. Moreover, we detect a slope towards the bluest wavelengths of our spectrum, which could either be explained by Rayleigh scattering from small aerosol particles or the pressure-broadened wings of a Na feature. The aerosol scattering possibility is particularly intriguing as previous observations with Hubble and ground-based facilities have concluded WASP-96 b’s upper atmosphere to be aerosol free, despite theoretical work indicating that it should be uniformly cloudy.
The third work presents a JWST NIRISS/SOSS transmission spectrum of the unique ultra-hot- Neptune LTT 9779 b; the only known planet within the hot-Neptune desert to have retained a primordial atmosphere. Our spectrum displays muted features which, when combined with interior
vii
structure and population synthesis models, allows us to conclude that the planet has a cloudy and high-metallicity terminator atmosphere. A high-metallicity scenario is consistent with broader trends in the exoplanet population, as well as in the solar system. Moreover, if advected onto the dayside, the terminator clouds that we find provide a natural explanation for the high albedo previously inferred for this planet. We posit that these clouds may be part of a positive feedback loop which serves to decrease the efficiency of atmosphere loss under the intense radiation of its host star, and aid LTT 9779 b’s survival in the hot-Neptune desert.
Finally, we return to LTT 9779 b with the study of an ultraviolet-to-infrared eclipse spectrum. Combining eclipses from NIRISS/SOSS with archival data as well as previously unpublished observations leveraging Hubble’s ultraviolet capabilities, we conclude that the high albedo of LTT 9779 b is likely caused by reflection from MgSiO3 clouds and confirm that its dayside temperature structure is non-inverted. We then undertake a comparative analysis of LTT 9779 b within the broader context of ultra-hot-Jupiters; which have comparable temperatures to LTT 9779 b but systematically cloud-free daysides and inverted temperature structures — thereby taking the first steps to reconcile this unusual planet with the broader population of ultra-hot worlds.
These works, as well as the ∼20 others to which I have contributed over the course of my PhD, demonstrate the unparalleled capabilities of JWST for the characterization of exoplanet atmospheres. Every new observation brings us one step closer to uncovering the origins of the diversity of the exoplanet population, as well as the fundamental differences and similarities between different “classes” of planets. This thesis highlights the contributions I have made to this endeavour during my PhD. JWST has undoubtedly moved many regions of the exoplanet population from aspirational frontiers to genuine observational targets, and as a result, the next decade will surely be one of the most transformative in the history of exoplanetary science.
|
Page generated in 0.0541 seconds