• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5439
  • 1684
  • 844
  • 583
  • 317
  • 215
  • 115
  • 110
  • 95
  • 95
  • 95
  • 95
  • 95
  • 94
  • 66
  • Tagged with
  • 12115
  • 1638
  • 1563
  • 1560
  • 1260
  • 1136
  • 1075
  • 1022
  • 988
  • 976
  • 909
  • 881
  • 846
  • 812
  • 800
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
571

Optimisering van die grafietbuis-parameters in elektrotermiese atoomabsorpsiespektrometrie

Rademeyer, Cornelius Johannes 15 July 2014 (has links)
D.Phil. (Chemistry) / In order to optimise the parameters for graphite tubes used for electrothermal atomic absorption spectrometry a good understanding of the factors that influence the efficiency of the atomisation process is necessary. The most important of these factors are the temperature surroundings of the analyte. Consequently, a model was developed to calculate the spatial and temporal variations of the wall temperature of the tube. Reliability of the calculations was ensured by determining some graphite parameters experimentally. Normal laboratory conditions could therefore be simulated precisely. There were some problems associated with the actual measurement of wall temperatures. After these had been investigated and solved, it was possible to correlate and verify the calculated temperat~re values with the experimentally measured ones. While it is likely that the analyte evaporates as such (or in modified forms) from the walls of the tube, the actual atomisation process most probably takes place in the gas phase. It is therefore the gas temperature that controls atomisation. In view of this a gas temperature model was developed by means of which spatial and temporal temperature data within the atomiser could be calculated. Together with the calculations of wall temperatures already mentioned, this presents for the first time the possibility of calculating temperatures, both spatially and temporally, at any point within the atomiser during the heating cycle. With the above information, the nature of atomisation processes can be studied. In this work, attempts were made to study the mechanism by which- the use of a platform placed within the atomiser eliminates interferences. Contrary to the literature, it was found that this can not be attributed to stabilized temperature surroundings.
572

Molecular beam laser stark spectroscopy of highly vibrationally excited molecules

Stoer, Marcell 04 August 2017 (has links)
The Stark field perturbed spectra of near infrared vibrational overtones of hydrogen fluoride and acetylene have been measured with a high resolution molecular beam laser spectrometer. A high performance laser power build-up cavity (optical resonator) was constructed to measured the weak ro-vibrational transitions of the v₂ + 3v₃ vibrational combination band of acetylene. The measured gain of the build-up cavity was found to be at least 300 out of a potential 2000. The primary reason for the lower than expected gain was attributed to losses induced by the extreme heat build-up on the mirror surfaces. The electric dipole moment for the v = 3 vibrational overtone of hydrogen fluoride was determined to be 1.9614 ± 0.0021 Debye. This result was compared with predictions from the available theoretical models and some theoretical constants were revised based on the current contribution to dipole moment function of hydrogen fluoride. The Stark field perturbed spectra of the v₁ + 3v₃ and v₂ + 3v₃ vibrational combination bands of acetylene were analysed for their polarisability tensors. In order to complete the study, the ground electronic state static polarisability and anisotropy of the polarisability were also determined. They were found to be 3.96A³ and 1.071 ± 0.014A³, respectively. The |1030⁰0⁰> state (v₁ + 3v₃) was observed to be coupled with the |0040⁰0⁰> infrared forbidden state (4v₃) in the presence of the Stark electric field. The resultant analysis produced values of 4.62 ± 0.09A³ for the polarisability and 1.15 ± 0.03A³ for the polarisability anisotropy of the |1030⁰0⁰> state. The difference in energy between |1030⁰0⁰> and |0040⁰0⁰> was determined to be 4.133 cm⁻¹, which compares well with local mode calculations. The measurements of the v₂ + 3v₃ band indicated that the |0130⁰0⁰> state was strongly coupled with another infrared allowed, unidentified (rogue), state in the absence of the Stark field as well as with the infrared forbidden, |1120⁰0⁰> state in the presence of the Stark field. The previously unobserved J = 5 ← 4 transition of the infrared allowed rogue state was recorded here for the first time. The Stark field perturbed spectra of the R(3) and R(5) ro-vibrational transitions of the v₂ + 3v₃ band also showed evidence of rogue transitions. The ensuing analysis determined that the |0130°0°) state has a polarisability of 3.5 ± 0.3A³ and a polarisability anisotropy of 5.6 ± 1.8A³. The Stark field perturbed spectra of the R(3) and R(5) transitions were fit to a non-crossing model and the energy levels of the rogue J = 4 and J = 6 states were determined. The energy level difference between |0130°0°) and |1120°0°) was determined to be -11.88±0.22 cm⁻¹. This does not compare well with local mode calculations and it is possible that the perturbations due to the presence of the rogue state impeded the accurate determination of the energy level difference. The identity of the rogue vibrational state could not be determined from the data presented in this thesis alone. However, collaborative work with another research group suggests that the rogue vibrational state is |0306°3¹) (see Chapter 7). / Graduate
573

The oxidation of nickel and titanium studied by XPS and XAES

Chalker, Paul R. January 1986 (has links)
No description available.
574

Thermoluminescence characteristics of synthetic quartz

Niyonzima, Pontien January 2014 (has links)
Quartz is one of the most abundant natural minerals in the crust of the earth. Due to its dosimetric luminescence properties, it is employed in retrospective dosimetry, archaeological and geological dating. The intensity and the structure of the TL glow curves of quartz are strongly dependent upon the origin, impurity content, formation condition and pre-irradiation heat treatment. The aim of this project is to study the mechanisms of thermoluminescence (TL), Phototranssferred thermoluminescence (PTTL) and radioluminescence (RL) in synthetic quartz and to discuss the results in terms of physical characteristics of point defects involved. Thermoluminescence measurements were made on a sample of synthetic quartz in its as-received state (unannealed) synthetic quartz annealed at 500˚C for 10 minutes. The unannealed sample shows six TL glow peaks located at 94, 116, 176, 212, 280 and 348˚C at a heating rate of 5˚Cs⁻¹. The annealed sample shows seven TL peaks at 115, 148, 214, 246, 300, 348 and 412˚C at a heating rate of 5˚Cs⁻¹. The intensity of peak I, at 94 and 115˚C for the unannealed and annealed samples respectively, increases with irradiation. Peak I has an activation energy of approximately 0.90 eV and a frequency factor of the order of 10¹¹ s⁻¹. The order of kinetics is between 0.9 and 1.2. The unannealed synthetic quartz shows phototransferred thermoluminescence (PTTL) at the position of peak I after removal of the first three peaks followed by illumination. The PTTL intensities show peak shaped behaviour when plotted against illumination time. The PTTL showed a quadratic increase with dose. The material exhibits fading of PTTL intensity with delay time. Radioluminescence was measured on synthetic quartz unannealed and annealed annealed at 500, 600, 700, 800, 900 and 1000˚C for 10 to 60 min. The emission spectra of synthetic quartz show seven emission bands. The effect of irradiation on the RL spectra is to increase the intensity of all emission bands for samples annealed at temperatures less than or equal to 700˚C. The effect of annealing time is to increase the RL amplitude for the samples annealed at temperatures greater than 700˚C. The annealing temperature increases the RL amplitude of all emission bands of the spectrum for all samples.
575

Angle resolved photoemission spectroscopy study of the three-layered strontium ruthenate Sr₄Ru₃O₁₀

Ngabonziza, Prosper 05 November 2012 (has links)
M.Sc. / This dissertation presents experimental data on the near Fermi-level electronic structure of Sr₄Ru₃O₁₀. This summary gives a review of the facts that have been observed in the analysis of the data taken, and directions for future work are suggested. The first part of this dissertation (from chapter 1 to chapter 3) is dedicated to a review on the studied system and the experimental technique exploited in this study. In fact, chapter 1 gives a review of the general physical properties of different members of the Ruddlesden Popper strontium ruthenate family Srn+1RunO3n+1, focusing on the trilayered Sr4Ru3O10 in particular. Furthermore, chapters 2 and 3 discuss some essential features of the theoretical and experimental aspects of angle resolved photoemission spectroscopy (ARPES), respectively. In the second part of the dissertation (chapter 4), the fi rst experimental ARPES data on band dispersions and Fermi surface maps of Sr4Ru3O10, are presented and discussed. The experiment was performed at the beamline Cassiopee of the Soleil synchrotron radiation facility in Paris (France). The study has provided the first information on the near Fermi-level band dispersions and Fermi surface of Sr4Ru3O10, the effect of changing different matrix elements on electronic band dispersions and Fermi surface maps of Sr4Ru3O10, and electronic correlations effects present in this compound. Remarkably, low temperature ( 5 K) ARPES data presented in this study suggest that there is only a 45 rotation of the square unit cell of Sr4Ru3O10, due to correlated rotations about the c-axis of the RuO6 octahedra, but no elongation of the sides of this unit cell; and consequently in reciprocal space the square BZ, determined by considering the symmetry of the Fermi surface sheets, is only rotated by 45 but its size is unchanged with respect to the non-distorted situation. However, this is not what is expected. Using room temperature lattice parameters from ref. [17], the BZ of this compound would be 45 rotated and reconstructed into a square twice smaller, a situation that was also previously observed in band structure calculations and ARPES data of Sr3Ru2O7 from ref. [4]. This behaviour was ascribed to the fact that the structure of this system is possibly not the same at room temperature as at low temperatures (down to 5 K), where the ARPES data of this work were acquired. Therefore low temperature (<100 K) X-ray diffraction data of Sr4Ru3O10 are needed in order to determine low temperature lattice parameters and compare them with room temperature ones so as to verify whether the structure of Sr4Ru3O10 is not the same at room and low temperatures.
576

Standaardisasie van spoorelemente in internasionale biologiese verwysingsmateriale met behulp van neutronaktiveringsanalise en atoomabsorpsiespektrofotometrie

Pieterse, Hendrik Jonathan 21 October 2015 (has links)
M.Sc. (Instrumental Chemical Analysis) / An investigation was undertaken into the analytical procedures and the identification of problem areas, for the certification of a new biological standard reference material supplied by the International Atomic Energy Agency, namely, a human hair sample designated as HH-I ...
577

Applications of near-infrared spectroscopy on certain cereal components

Kokot, Michael Leon 15 May 2014 (has links)
M.Sc. (Chemistry) / Please refer to full text to view abstract
578

Ontwikkeling van monostandaardkalibrasiemetodes in X-straalfluoressensie-analise

Oosthuizen, Neil 18 March 2014 (has links)
M.Sc. (Chemistry) / In this investigation a monostandard calibration technique was developed for multi-element X-ray fluorescence analysis. A reliable method is described for the calculation of slopes of calibration lines for thin-film and powder samples using monochromatic as well as polichromatic excitation. Theoretically calculated slopes for elements within one serles, e.g. the K-series, were normalised .using one or two known slopes for elements in the series. The mathematical equations used to -. interpolate slopes as a function of atomic number, were based on the fundamental relationship between fluorescent intensity and atomic number, fluorescent yield, detector efficiency, concentration and mass absorption coefficients. Kramer's formula was used to approximate the shape of the" primary radiation spectrum. The method was applied to the analysis of the K-series elements, with the use of thin-film and powder samples. The excitation was achieved by the use of a molybdenum-, gold-, tungsten- and chrome anodes. The method was also applied to the analysis of the L-series powder samples. The monochromatic excitation of the L-series elements, achieved with the use of a molybdenum anode, is also described. The polichromatic excitation of the L-series powder samples was obtained with a molybdenum-, gold-, tungsten- and chrome anode.
579

Determining the Pressure Shift of Helium I Lines Using White Dwarf Stars

Camarota, Lawrence Francis, Camarota, Lawrence Francis January 2017 (has links)
This dissertation explores the non-Doppler shifting of Helium lines in the high pressure conditions of a white dwarf photosphere. In particular, this dissertation seeks to mathematically quantify the shift in a way that is simple to reproduce and account for in future studies without requiring prior knowledge of the star’s bulk properties (mass, radius, temperature, etc.). Two main methods will be used in this analysis. First, the spectral line will be quantified with a continuous wavelet transformation, and the components will be used in a χ^2 minimizing linear regression to predict the shift. Second, the position of the lines will be calculated using a best-fit Levy-alpha line function. These techniques stand in contrast to traditional methods of quantifying the center of often broad spectral lines, which usually assume symmetry on the parts of the lines.
580

Spectrochemical analysis of solid samples using resonance-enhanced laser-induced plasma spectroscopy

Lui, Siu Lung 01 January 2005 (has links)
No description available.

Page generated in 0.0443 seconds