• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 14
  • 13
  • 6
  • 6
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 163
  • 163
  • 125
  • 118
  • 39
  • 34
  • 25
  • 23
  • 23
  • 21
  • 21
  • 19
  • 18
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Providing Efficient and Secure Cooperative Spectrum Sensing for Multi-Channel Cognitive Radio Networks

Kasiri Mashhad, Behzad January 2010 (has links)
The focus of this thesis is on cooperative spectrum sensing and related security issues in multi-channel cognitive radio networks (MCCRNs). We first study the channel assignment for cooperative spectrum sensing in MCCRNs to maximize the number of available channels. In centralized implementation, a heuristic scheme is proposed along with a greedy scheme to reduce the reported information from the cognitive radios (CRs). In distributed scenario, a novel scheme with multi-round operation is designed following the coalitional game theory. Next, we focus on the physical layer security issues for cooperative spectrum sensing in MCCRNs, caused by Byzantine attacks. New counterattacks are proposed to combat attacks comprising coalition head and CRs as Byzantine attackers, which target to reduce the number of available channels for sensing in distributed MCCRNs. First, a new secure coalition head selection is proposed, by using statistical properties of the exchanged SNRs in the coalitions. Then, an iterative algorithm is proposed to block out attackers, if they continue attacking the system. The important problem of key management is considered next, and an energy-efficient identity-based and a certificate-based distributed key management schemes are proposed. First, a new elliptic curve cryptography (ECC)-based distributed private key generation scheme is proposed to combat the single point of failure problem along with novel distributed private key generator (DPKG) selection schemes to preserve security and energy-efficiency. Because of its importance in the proposed identity-based key management scheme, we further propose a low-complexity DPKG assignment, based on multi-objective programming, which can capture DPKG fairness in addition to energy-efficiency. Finally, a more powerful and intelligent distributed cooperative Byzantine attack on the proposed multi-channel cooperative spectrum sensing is proposed, where attackers collude by applying coalitional game theory to maximize the number of invaded channels in a distributed manner. As a remedy, a hierarchical identity-based key management scheme is proposed, in which CRs can only play on a certain number of requested channels and channel access for sensing is limited to the honest CRs selected in the coalitional game. Simulation results show that the proposed schemes can significantly improve cooperative spectrum sensing and secure the system against Byzantine attacks.
72

Design of Optimal Frameworks for Wideband/Multichannel Spectrum Sensing in Cognitive Radio Networks

Paysarvi Hoseini, Pedram 06 1900 (has links)
Several optimal detection frameworks for wideband/multichannel spectrum sensing in cognitive radio networks are proposed. All frameworks search for multiple secondary transmission opportunities over a number of narrowband channels, enhancing the secondary network performance while respecting the primary network integrity and keeping the interference limited. Considering a periodic sensing scheme with either uniform or non-uniform channel sensing durations, the detection problems are formulated as joint optimization of the sensing duration(s) and individual detector parameters to maximize the aggregate achievable secondary throughput capacity given some bounds/limits on the overall interference imposed on the primary network. It is demonstrated that all the formulated optimization problems can be solved using convex optimization if certain practical constraints are applied. Simulation results attest that the proposed frameworks achieve superior performance compared to contemporary frameworks. To realize efficient implementation, an iterative low-complexity algorithm which solves one of the optimization problems with much lower complexity compared to other numerical methods is presented. It is established that the iteration-complexity and the complexity-per-iteration of the proposed algorithm increases linearly with the number of optimization variables (i.e. the number of narrowband channels). / Communication
73

Ανίχνευση φάσματος και ταυτοποίηση σήματος για συστήματα γνωστικών επικοινωνιών (cognitive radio) / Spectrum sensing and signal identification for cognitive radio systems

Χαχάμπης, Νικόλαος 14 December 2009 (has links)
Τα τελευταία χρόνια παρατηρήθηκε μια ραγδαία αύξηση στα ασύρματα συστήματα επικοινωνίας και τις σχετικές εφαρμογές. Μετά από αυτές τις εξελίξεις, το κλασικό σύστημα αδειοδότησης και κατόπιν αποκλειστικής χρήσης του ηλεκτρομαγνητικού φάσματος οδηγείται στα όριά του, καθώς πλέον πολύ λίγες περιοχές του φάσματος είναι ελεύθερες. Ωστόσο, αρκετές έρευνες που πραγματοποιήθηκαν από οργανισμούς όπως η Ομοσπονδιακή Επιτροπή Επικοινωνιών (Federal Communications Commission – FCC) στην Αμερική κατέδειξαν ότι μεγάλες περιοχές του ήδη αδειοδοτημένου φάσματος παραμένουν ανενεργές για σημαντικά χρονικά διαστήματα σε ορισμένες γεωγραφικές περιοχές. Μια νέα επαναστατική τεχνολογία που αποσκοπεί στην αποδοτικότερη χρησιμοποίηση του φάσματος είναι οι Γνωστικές Επικοινωνίες (Cognitive Radio). Η τεχνολογία αυτή θα υποστηρίζει “έξυπνα” τερματικά τα οποία θα είναι ενήμερα για το ασύρματο περιβάλλον τους και, ανάλογα με τις επικρατούσες συνθήκες και τις ανάγκες των χρηστών θα προσαρμόζουν κάποιες παραμέτρους της μετάδοσής τους, με πιο σημαντική την μπάντα μετάδοσης. Με άλλα λόγια, ένα Cognitive Radio θα ανιχνεύει το φάσμα και θα εντοπίζει φασματικές οπές (spectrum holes), περιοχές δηλαδή του φάσματος που τη δεδομένη στιγμή δεν χρησιμοποιούνται από τον πρωταρχικό χρήστη τους, και θα χρησιμοποιεί αυτές τις οπές για να μεταδώσει πληροφορία. Επιπλέον, το Cognitive Radio θα είναι ικανό να αναγνωρίζει ακριβώς τα συστήματα επικοινωνίας που υπάρχουν γύρω του (3G, WLAN,...) και θα μπορεί να συνδέεται σε αυτά, εφ' όσον ο χρήστης διαθέτει την κατάλληλη άδεια. Από τα παραπάνω γίνεται φανερό ότι ένα πολύ σημαντικό κομμάτι των γνωστικών επικοινωνιών είναι η ανίχνευση του φάσματος (spectrum sensing). Έχουν προταθεί αρκετοί αλγόριθμοι οι οποίοι είτε ανιχνεύουν την παρουσία πρωτεύοντος χρήστη, είτε κάνουν μια πιο λεπτομερή εκτίμηση του φάσματος αποσκοπώντας στην ταυτοποίηση του παρόντος τηλεπικοινωνιακού συστήματος. Επίσης ενδιαφέρον παρουσιάζει και η δυνατότητα συνεργασίας μεταξύ πολλών χρηστών κατά την ανίχνευση, η οποία έχει αποδειχθεί ότι παρέχει ανοσία σε φαινόμενα όπως multipath fading και shadowing. Σε αυτή την εργασία μελετάται και υλοποιείται μία τεχνική ανίχνευσης φάσματος και ταυτοποίησης σήματος, η οποία αξιοποιεί την a priori διαθέσιμη πληροφορία για τα πρωτεύοντα σήματα (εύρος ζώνης, κεντρική συχνότητα) για να αναγνωρίσει τον τύπο του σήματος. Η τεχνική εφαρμόζεται επίσης σε ένα συνεργατικό σενάριο, όπου πολλοί δευτερεύοντες χρήστες ανταλλάσσουν πληροφορία με στόχο την ακριβέστερη εκτίμηση του φάσματος. Διαπιστώνεται ότι η τεχνική καταφέρνει να διακρίνει μεταξύ διαφορετικών σημάτων, ακόμα και όταν αυτά επικαλύπτονται μερικώς στη συχνότητα. Επιπλέον, η συνεργασία οδηγεί σε μεγαλύτερη πιθανότητα ανίχνευσης και σε λιγότερα σφάλματα ταυτοποίησης. / In recent years, there has been a rapid increase in the number of wireless telecommunications systems and relevant applications. After these developments, the traditional system of licensing and exclusive use of the radio spectrum is driven to its limits, since very few regions of the spectrum are free anymore. However, a number of measurements performed by organizations such as the Federal Communications Commission (FCC) in the USA have shown that large regions of licensed spectrum remain idle for significant portions of time, in certain geographic areas. Cognitive Radio is a new, revolutionary technology that aims in more efficient use of the spectrum. This technology supports “intelligent” terminals which are aware of their wireless environment and, depending on present circumstances and user needs they can adjust certain parameters of their transmissions, mainly the transmission band. In other words, a Cognitive Radio senses the radio spectrum and detects spectrum holes, i.e. regions of the spectrum that are currently not used by their primary user, and uses these holes to transmit. In addition, Cognitive Radio is expected to be able to identify the communication systems in its environment and connect to them, as long as the user has proper authorization. It then becomes obvious that spectrum sensing is a very important part of Cognitive Radio. A number of algorithms have been proposed that either detect the presence of a primary user, or perform a more detailed estimation of the spectrum in order to accurately identify the current communication standard. The possibility of cooperation between many users during sensing has also attracted interest, since it has proven to provide immunity against channel effects such as multipath fading and shadowing. In this work, a spectrum sensing and signal identification technique is studied and implemented that takes advantage of a priori information available about the primary systems (signal bandwidth, center frequency), in order to characterize the signal type. The technique is also applied to a collaborative scenario, where many secondary users exchange information to more accurately estimate the spectrum. It is seen that this technique is able to distinguish different signals, even when they partially overlap in frequency. Furthermore, it is shown that cooperation leads to a greater probability of detection and a lower identification error rate.
74

Modelo de seleção de canais baseado em sensoriamento espectral distribuído para redes WirelessHART

Winter, Jean Michel January 2017 (has links)
Redes de sensores sem fio tem ganhado grande destaque em diferentes aplicações, tais como, domésticas, comercial e industrial, trazendo mais flexibilidade e mais conveniência em nossas vidas. Entretanto, seu desempenho é influenciado por diversos fatores como, por exemplo, características do ambiente de propagação das ondas de rádio e outras tecnologias de comunicação sem fio que podem coexistir em uma mesma área de cobertura. Os recursos utilizados nas comunicações sem fio são limitados e muitas vezes não exclusivos possibilitando interferências provenientes de diferentes tipos de fontes. O presente trabalho busca soluções para o uso mais eficiente dos recursos da rede de comunicação sem fio, são investigados e propostos métodos adaptativos para uma rede sem fio industrial, o protocolo WirelessHART, utilizando mecanismos dinâmicos de sensoriamento de espectro e seleção de canal entre os dispositivos da rede. É apresentado uma arquitetura de gerenciamento do espectro em conformidade com o protocolo, baseado em sensoriamento do espectro distribuído e no monitoramento do desempenho das comunicações. A arquitetura utilizada permite a classificação de um conjunto de canais específicos entre os pares de dispositivos durante a operação da rede de comunicação. O trabalho demonstra o desempenho dos mecanismos desenvolvidos para a detecção de interferências com redes do tipo IEEE 802.11. / Wireless sensor networks have been expanding rapidly in many applications for different areas such as residential, office and industrial. Wireless connections bring many advantages as installation feasibility, scalability, mobility and reduce infrastructure costs. However, wireless network performance is affected by many factors as, for example, environment characteristics and other wireless communication technologies at the same coverage area. The wireless communication resources are limited and many times shared, allowing interferences from different kind of electromagnetic sources. This work presents a solution for an efficient use of the wireless communication network resources, investigate and propose adaptive methods for an industrial wireless network, the WirelessHART protocol, using dynamic mechanisms of spectrum sensing and channel selection between the devices. A protocol spectrum management architecture based on distributed sensing and monitoring of communications performance is presented, in compliance with WirelessHART protocol, allowing the classification of a set of specific channels between peer devices during the communication network’s operation. Also, it is presented the channel selection performance for IEEE 802.11 interference.
75

Security and Privacy in Dynamic Spectrum Access: Challenges and Solutions

January 2017 (has links)
abstract: Dynamic spectrum access (DSA) has great potential to address worldwide spectrum shortage by enhancing spectrum efficiency. It allows unlicensed secondary users to access the under-utilized spectrum when the primary users are not transmitting. On the other hand, the open wireless medium subjects DSA systems to various security and privacy issues, which might hinder the practical deployment. This dissertation consists of two parts to discuss the potential challenges and solutions. The first part consists of three chapters, with a focus on secondary-user authentication. Chapter One gives an overview of the challenges and existing solutions in spectrum-misuse detection. Chapter Two presents SpecGuard, the first crowdsourced spectrum-misuse detection framework for DSA systems. In SpecGuard, three novel schemes are proposed for embedding and detecting a spectrum permit at the physical layer. Chapter Three proposes SafeDSA, a novel PHY-based scheme utilizing temporal features for authenticating secondary users. In SafeDSA, the secondary user embeds his spectrum authorization into the cyclic prefix of each physical-layer symbol, which can be detected and authenticated by a verifier. The second part also consists of three chapters, with a focus on crowdsourced spectrum sensing (CSS) with privacy consideration. CSS allows a spectrum sensing provider (SSP) to outsource the spectrum sensing to distributed mobile users. Without strong incentives and location-privacy protection in place, however, mobile users are reluctant to act as crowdsourcing workers for spectrum-sensing tasks. Chapter Four gives an overview of the challenges and existing solutions. Chapter Five presents PriCSS, where the SSP selects participants based on the exponential mechanism such that the participants' sensing cost, associated with their locations, are privacy-preserved. Chapter Six further proposes DPSense, a framework that allows the honest-but-curious SSP to select mobile users for executing spatiotemporal spectrum-sensing tasks without violating the location privacy of mobile users. By collecting perturbed location traces with differential privacy guarantee from participants, the SSP assigns spectrum-sensing tasks to participants with the consideration of both spatial and temporal factors. Through theoretical analysis and simulations, the efficacy and effectiveness of the proposed schemes are validated. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
76

Modelo de seleção de canais baseado em sensoriamento espectral distribuído para redes WirelessHART

Winter, Jean Michel January 2017 (has links)
Redes de sensores sem fio tem ganhado grande destaque em diferentes aplicações, tais como, domésticas, comercial e industrial, trazendo mais flexibilidade e mais conveniência em nossas vidas. Entretanto, seu desempenho é influenciado por diversos fatores como, por exemplo, características do ambiente de propagação das ondas de rádio e outras tecnologias de comunicação sem fio que podem coexistir em uma mesma área de cobertura. Os recursos utilizados nas comunicações sem fio são limitados e muitas vezes não exclusivos possibilitando interferências provenientes de diferentes tipos de fontes. O presente trabalho busca soluções para o uso mais eficiente dos recursos da rede de comunicação sem fio, são investigados e propostos métodos adaptativos para uma rede sem fio industrial, o protocolo WirelessHART, utilizando mecanismos dinâmicos de sensoriamento de espectro e seleção de canal entre os dispositivos da rede. É apresentado uma arquitetura de gerenciamento do espectro em conformidade com o protocolo, baseado em sensoriamento do espectro distribuído e no monitoramento do desempenho das comunicações. A arquitetura utilizada permite a classificação de um conjunto de canais específicos entre os pares de dispositivos durante a operação da rede de comunicação. O trabalho demonstra o desempenho dos mecanismos desenvolvidos para a detecção de interferências com redes do tipo IEEE 802.11. / Wireless sensor networks have been expanding rapidly in many applications for different areas such as residential, office and industrial. Wireless connections bring many advantages as installation feasibility, scalability, mobility and reduce infrastructure costs. However, wireless network performance is affected by many factors as, for example, environment characteristics and other wireless communication technologies at the same coverage area. The wireless communication resources are limited and many times shared, allowing interferences from different kind of electromagnetic sources. This work presents a solution for an efficient use of the wireless communication network resources, investigate and propose adaptive methods for an industrial wireless network, the WirelessHART protocol, using dynamic mechanisms of spectrum sensing and channel selection between the devices. A protocol spectrum management architecture based on distributed sensing and monitoring of communications performance is presented, in compliance with WirelessHART protocol, allowing the classification of a set of specific channels between peer devices during the communication network’s operation. Also, it is presented the channel selection performance for IEEE 802.11 interference.
77

Estimation of Cost-based Channel Occupancy in Cognitive Radio Using Sequential Monte Carlo Methods

January 2014 (has links)
abstract: Dynamic channel selection in cognitive radio consists of two main phases. The first phase is spectrum sensing, during which the channels that are occupied by the primary users are detected. The second phase is channel selection, during which the state of the channel to be used by the secondary user is estimated. The existing cognitive radio channel selection literature assumes perfect spectrum sensing. However, this assumption becomes problematic as the noise in the channels increases, resulting in high probability of false alarm and high probability of missed detection. This thesis proposes a solution to this problem by incorporating the estimated state of channel occupancy into a selection cost function. The problem of optimal single-channel selection in cognitive radio is considered. A unique approach to the channel selection problem is proposed which consists of first using a particle filter to estimate the state of channel occupancy and then using the estimated state with a cost function to select a single channel for transmission. The selection cost function provides a means of assessing the various combinations of unoccupied channels in terms of desirability. By minimizing the expected selection cost function over all possible channel occupancy combinations, the optimal hypothesis which identifies the optimal single channel is obtained. Several variations of the proposed cost-based channel selection approach are discussed and simulated in a variety of environments, ranging from low to high number of primary user channels, low to high levels of signal-to-noise ratios, and low to high levels of primary user traffic. / Dissertation/Thesis / M.S. Electrical Engineering 2014
78

Cooperative spectrum prediction for improved efficiency of cognitive radio networks

Shaghluf, Nagwa 18 January 2018 (has links)
In this thesis, the spectrum and energy efficiency of cooperative spectrum prediction (CSP) in cognitive radio networks are investigated. In addition, the performance of CSP is evaluated using a hidden Markov model (HMM) and a multilayer perceptron (MLP) neural network. The cooperation between secondary users in predicting the next channel status employs AND, OR and majority rule fusion schemes. These schemes are compared for HMM and MLP predictors as a function of channel occupancy in terms of prediction error, spectrum efficiency and energy efficiency. The impact of busy and idle state prediction errors on the spectrum efficiency is determined. Further, the spectrum efficiency is compared for different numbers of primary users (PUs). Simulation results are presented which show a significant improvement in the spectrum efficiency using CSP with the majority rule at the cost of a small degradation in energy efficiency compared to single spectrum prediction (SSP) and traditional spectrum sensing (TSS). The HMM predictor provides better performance than the MLP predictor. Moreover, the total probability of prediction error with the majority rule provides the best performance compared to SSP and the other fusion rules. On the other hand, the AND and OR rules have the worst performance in the high and low traffic cases, respectively. The majority rule provides a good tradeoff between busy and idle state prediction errors compared with the AND and OR rules and SSP. Further, a reduction in the busy state prediction error increases the SE more compared to a reduction in the idle state prediction error. / Graduate
79

Spectrum Sensing for Cognitive Radios: Improving Robustness to Impulsive Noise

Renard, Julien 07 June 2016 (has links)
Many different types of promising spectrum sensing algorithms for Cognitive Radio (CR) have already been developed. However, many of these algorithms lack robustness with respect to signal statistical parameters uncertainties, such as the noise variance or the shape of its distribution (often assumed to be simply Gaussian). In conjunction with the low Signal-to-Noise Ratio (SNR) requirements, this lack of robustness can often render interesting sensing algorithms impractical for real-life applications. In this thesis, we primarily focus on the impact of heavy-tail noise distributions on different CR detectors and the use of signal limiters (mostly the spatial sign function) to improve their robustness to such noise distributions. Introducing a non-linear transformation of the received signal prior to its processing by the detector fundamentally changes the signal distribution which in turn modifies the distribution of the detector statistic. In order to parametrize the detector and study its performance, it is then necessary to know the shape of the modified distribution.Three types of detectors are investigated: a generic second-order cyclic-feature detectors, a Scaled-Largest Eigenvalue (SLE) detector studied in the context of stationary time-series and a new Sequential Likelihood Ratio Test (SLRT) detector. The analysis conducted for each detector revolves around the influence of its parameters, the distribution of the detector statistic and several comparisons with similar detectors for various detection scenarios. Our results indicate that at the cost of a moderate performance loss in a Gaussian noise environment, all the detectors fitted with a signal limiter become robust to impulsive noise and noise parameters uncertainties. We provide analytical approximations for the detectors statistical distribution that allow us to use the detectors in such configurations as well as to study their performance for different signal limiters and noise distributions. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
80

Cooperative Wideband Spectrum Sensing Based on Joint Sparsity

jowkar, ghazaleh 01 January 2017 (has links)
COOPERATIVE WIDEBAND SPECTRUM SENSING BASED ON JOINT SPARSITY By Ghazaleh Jowkar, Master of Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University Virginia Commonwealth University 2017 Major Director: Dr. Ruixin Niu, Associate Professor of Department of Electrical and Computer Engineering In this thesis, the problem of wideband spectrum sensing in cognitive radio (CR) networks using sub-Nyquist sampling and sparse signal processing techniques is investigated. To mitigate multi-path fading, it is assumed that a group of spatially dispersed SUs collaborate for wideband spectrum sensing, to determine whether or not a channel is occupied by a primary user (PU). Due to the underutilization of the spectrum by the PUs, the spectrum matrix has only a small number of non-zero rows. In existing state-of-the-art approaches, the spectrum sensing problem was solved using the low-rank matrix completion technique involving matrix nuclear-norm minimization. Motivated by the fact that the spectrum matrix is not only low-rank, but also sparse, a spectrum sensing approach is proposed based on minimizing a mixed-norm of the spectrum matrix instead of low-rank matrix completion to promote the joint sparsity among the column vectors of the spectrum matrix. Simulation results are obtained, which demonstrate that the proposed mixed-norm minimization approach outperforms the low-rank matrix completion based approach, in terms of the PU detection performance. Further we used mixed-norm minimization model in multi time frame detection. Simulation results shows that increasing the number of time frames will increase the detection performance, however, by increasing the number of time frames after a number of times the performance decrease dramatically.

Page generated in 0.0545 seconds