• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of a Non-intrusive Optical Non-spherical Particle Sizing Sensor at Turboshaft Engine Inlet

Antous, Brittney Louise 20 April 2023 (has links)
Master of Science / Particulate ingestion has been an ongoing issue in the aviation industry as aircraft are required to operate in hostile environments. Ingesting particulates such as sand or dust can erode and damage engine components. This damage will affect the life cycle of parts and compromise the safety of the aircraft. This issue is very costly and dangerous. In order to combat these issues, a particle sensor with the ability to monitor in-stream particulate size, shape, and mass flow rate is necessary. Our team with the Advanced Propulsion and Power Laboratory developed a non-intrusive optical sensor that is able to characterize non-spherical particles. This sensor has been used in various applications through the years; however, most recently, the sensor has been demonstrated at the Virginia Tech M250 engine inlet. This was the first time that the sensor was directly attached to an engine's inlet and subjected to engine conditions. For this validation, highly erosive, coarse quartz was used. Utilizing laser and cameras, the sensor is able to deduce the particles' average shape and size distributions. From those measurements, the mass flow rate of the particle can be calculated. The works provided in the thesis show that particle ingestion rates can be measured to an acceptably high accuracy. In contrast, refinement of the processing techniques can provide spatially resolved measurements of particle characteristics as well.
2

Numerical Evaluation of Forces Affecting Particle Motion in Time-Invariant Pressurized Jet Flow

Peterson, Donald E. 14 August 2023 (has links) (PDF)
This work evaluates the relative significance of forces determining the motion of a pulverized coal particle under conditions representative of a pressurized oxy-coal combustor. The gravity force and surface forces of drag, fluid stress, added mass, and Basset history are discussed and appropriate forms of these force equations are chosen, with a consideration of spherical and non-spherical drag and the Basset history kernel. Studies from the literature that emphasize specific forces are used to validate the implementation of the force equations and correlations. Modeling is based on time-averaged, one-dimensional motion of a single non-reacting particle along the centerline of a round, turbulent jet. The numerical methodology employed for solving the particle equation of motion is described in detail, and simulated particle motion is compared to experimental and high-fidelity simulations from the literature. Comparisons show the numerical methodology performs adequately relative to higher fidelity simulations and experimental test cases for one-dimensional, time-invariant conditions. To assess the effect of pressure on particle forces and motion under different conditions, simulation cases are run for particle diameters of 20 μm, 50 μm, 125 μm, gas temperatures of 300 K and 1500 K, and gas pressures of 1.01325 bar, 2 bar, 5 bar, 10 bar, 20 bar, 40 bar. Simulations are conducted over a 0.75-m length in a simplified environment representative of the pressurized oxy-coal (POC) combustor at Brigham Young University. Results show that all surface forces examined can be locally significant at high gas pressures when particle and gas velocity differences, i.e., particle Reynolds numbers, are greatest. The following trends are found for the behavior of surface forces in simplified, POC combustor simulations: 1) The quasi-steady drag force is always significant, though it's relative contribution to particle motion decreases as particles traverse regions with significant fluid velocity gradients or significant values for the substantial derivative of fluid velocity. Furthermore, quasi-steady drag is the only surface force that is significant throughout the entirety of a particle's trajectory. The relative contribution of the drag force decreases with increasing gas pressure. 2) The impact of the fluid stress force on particle motion increases with increasing gas pressure and particle size. The fluid stress force can be locally important for all of the particles sizes when at a gas temperature of 300 K and elevated pressure, as particles traverse regions with significant substantial derivatives of fluid velocity. The local impact of the fluid stress force is largely negligible at 1500 K, except for the case of the largest particle at the greatest pressure. 3) The behavior of the added mass force largely mirrors that of the fluid stress force, though the added mass force is generally of lesser magnitude. Therefore, the added mass force can be locally important for all of the particles sizes when at a gas temperature of 300 K and elevated pressure, as particles traverse regions with significant substantial derivatives of fluid velocity. The added mass force is generally the least significant of the analyzed surface forces. 4) The Basset history force is locally significant for all cases where the particles are traversing regions with significant fluid velocity gradients. The impact of the Basset history force on particle motion increases with increasing gas pressure and particle size, while decreasing as gas temperature increases.
3

Study of Fluid Forces and Heat Transfer on Non-spherical Particles in Assembly Using Particle Resolved Simulation

He, Long 16 January 2018 (has links)
Gas-solid flow is fundamental to many industrial processes. Extensive experimental and numerical studies have been devoted to understand the interphase momentum and heat transfer in these systems. Most of the studies have focused on spherical particle shapes, however, in most natural and industrial processes, the particle shape is seldom spherical. In fact, particle shape is one of the important parameters that can have a significant impact on momentum, heat and mass transfer, which are fundamental to all processes. In this study particle-resolved simulations are performed to study momentum and heat transfer in flow through a fixed random assembly of ellipsoidal particles with sphericity of 0.887. The incompressible Navier-Stokes equations are solved using the Immersed Boundary Method (IBM). A Framework for generating particle assembly is developed using physics engine PhysX. High-order boundary conditions are developed for immersed boundary method to resolve the heat transfer in the vicinity of fluid/particle boundary with better accuracy. A complete framework using particle-resolved simulation study assembly of particles with any shape is developed. The drag force of spherical particles and ellipsoid particles are investigated. Available correlations are evaluated based on simulation results and recommendations are made regarding the best combinations. The heat transfer in assembly of ellipsoidal particle is investigated, and a correlation is proposed for the particle shape studied. The lift force, lateral force and torque of ellipsoid particles in assembly and their variations are quantitatively presented and it is shown that under certain conditions these forces and torques cannot be neglected as is done in the larger literature. / Ph. D. / Gas-solid flow is fundamental to many industrial processes such as pollution control, CO2 capture, biomass gasification, chemical reactors, sprays, pneumatic conveying, etc. Extensive experimental and numerical studies have been devoted to understand the interphase momentum and heat transfer in these systems. Most of the studies have focused on spherical particle shapes, however, in most natural and industrial processes, the particle shape is seldom spherical. In fact, particle shape is one of the important parameters that can have a significant impact on momentum, heat and mass transfer, which are fundamental to all processes. In this study particle-resolved simulations are performed to study momentum and heat transfer in flow through a fixed random assembly of ellipsoidal particles. A Framework for generating particle assembly is developed using physics engine—PhysX. A complete framework using particle-resolved simulation study assembly of particles with any shape is developed. The drag force of spherical particles and ellipsoidal particles are investigated. Available correlations are evaluated based on simulation results and recommendations are made regarding the best combinations. The heat transfer in assembly of ellipsoidal particle is investigated, and a correlation is proposed for the particle shape studied. The lift force, lateral force and torque of ellipsoidal particles in assembly and their variations are quantitatively presented and it is shown that under certain conditions these forces and torques cannot be neglected as is done in the larger literature. The framework developed in this work can be used to study the heat and momentum transfer in flow with spherical and non-spherical particles. With data collected using this method, more accurate drag and heat transfer models can be developed for fluid-particle system.
4

Θεωρητική μελέτη της ηλεκτρομαγνητικά επαγώμενης δύναμης σε σωματίδια μίκρο – και νανομετρικών διαστάσεων

Γαλιατσάτος, Παύλος 23 June 2008 (has links)
Όταν ηλεκρομαγνητική (ΗΜ) ακτινοβολία, προερχόμενη από κάποια πηγή, προσπίπτει σε σύνολο από σωμάτια τότε λαμβάνουν χώρα δύο φαινόμενα. Πρώτον, ασκούνται δυνάμεις στα σωμάτια οι οποίες οφείλονται αποκλειστικά στην σκέδαση της ΗΜ ακτινοβολίας της πηγής από αυτά. Οι δυνάμεις αυτές ονομάζονται Optical Trapping Forces. Δεύτερον, τα ίδια τα σωμάτια σκεδάζοντας την ΗΜ ακτινοβολία της πηγής, λειτουργούν και αυτά ως πηγές ακτινοβολίας. Έτσι ασκούν δυνάμεις το ένα στο άλλο. Οι δυνάμεις αυτές ονομάζονται Optical Binding Forces. H παράλληλη δράση των δύο αυτών ειδών δυνάμεων έχει ως αποτέλεσμα την δημιουργία ευσταθών δομών από τα σωμάτια. Προκειμένου την θεωρητική πρόβλεψη των δομών που αναπτύσσονται, χρειαζόμαστε έναν ταχύτατο αλγόριθμο υπολογισμού των δυνάμεων. Ο πιο ταχύς αλγόριθμος θα είναι το αποτέλεσμα της εύρεσης ενός αναλυτικού τύπου υπολογισμού των δυνάμεων. Η κατασκευή και η παρουσίαση του αναλυτικού τύπου αυτού είναι και το περιεχόμενο της εργασίας που ακολουθεί. / When the electromagnetic radiation, originating from a source, meets an ensemble of particles, there are two phenomena which take place. First, there are forces acting on these particles due exclusively to the scattering of the electromagnetic radiation from the particles. These are the so-called “Optical Trapping Forces”. Second, particles themselves act as sources of radiation since they scatter the radiation, and they exert forces one to another. These are the so-called “Optical Binding Forces”. The coexistence of these two different forces results in the creation of stable structures where the particles are self-organized. To achieve the theoretical prediction of these structures, we need a very efficient algorithm to calculate the forces. The fastest possible and thus more efficient algorithm originates from the analytical formula of the forces. The construction and the solution of the forces analytical formula is the content of this research work.
5

Extension du modèle de tracé de rayons vectoriels complexes et application à la caractérisation d'une particule non-sphérique / Extension of vectorial complex ray model and its application to the metrology of non-spherical particles

Ma, Zelong 31 January 2018 (has links)
Cette thèse est dédiée à l'extension du Tracé de Rayons Vectoriels Complexes (TRVC) développé au laboratoire et son application à la caractérisation des particules non-sphériques. Dans divers domaines de recherche, tels que la mécanique des fluides et la combustion, nous devons mesurer les caractéristiques des particules. Parmi les différents types de techniques de mesure, la métrologie optique est largement utilisée grâce à sa précision et sa fiabilité. Cependant, la forme des particules est souvent considérée comme sphérique principalement à cause du manque de moyens pour prédire avec précision l'interaction de la lumière avec de grandes particules non-sphériques. TRVC a été développé pour répondre à ces besoins. Il est basé sur le modèle de rayons mais une amélioration radicale a été apportée dans ce nouveau modèle par l'introduction d'une nouvelle propriété dans la notion de rayons lumineux - la courbure de front d'onde. Dans cette thèse, le modèle est appliqué à réexaminer la théorie d'Airy. Il a été montré que TRVC prédit mieux les intensités et les positions des lobes secondaires dans les arcs-en-ciel d'une particule sphérique que la théorie d'Airy. Ensuite, TRVC est appliqué à l'étude des propriétés des arcs-en-ciel formés par les ellipsoïdes allongé et aplati. Il est montré que TRVC peut prédire analytiquement les positions et les intensités de lobes secondaires dans les arcs-en-ciel d’une particule sphéroïdale lorsqu’elle est éclairée par une onde plane dans le plan symétrique. Les pics dus à l'effet focal d'une particule sphéroïdale aplatie ont également été évalués analytiquement en utilisantle facteur de divergence de TRVC. Un système de mesure est aussi mis en place dans le laboratoire pour la diffusion de la lumière par des gouttes pendantes. Il a été montré que le rapport des intensités des deux premiers arcs-en-ciel est sensible à l'ellipticité d'un sphéroïde équivalent. Ceci ouvre un champ d'application potentiel pour caractériser la déformation d'une goutte pendante. / This thesis is dedicated to the extension of Vectorial Complex Ray Model (VCRM)developed in the laboratory and its application in the characterization of large nonspherical particles. In various research domains, such as the uid mechanics and the combustion field, we need to measure the characteristics of the particles. Among di_erent kinds of measurement techniques, the optical metrology is largely employed due to its advantage of being accurate, reliable and non-intrusive. However, in many optical techniques, the shape of the particles is assumed to be spherical. The main reason of this limit is due to the lack of theoretical model to describe with precision the interaction of light with large non-spherical particles. The Vectorial Complex Ray Model has been developed to reply this demand. It is based on the ray model but a radical improvement has been done by introducing a new property the wave front curvatures in the ray model. In this thesis, the model is firstly applied to reexamine the Airy theory. It is shown that even in the case of spherical particle VCRM predicts better the intensity and positions of supernumerary bows of rainbow than the Airy theory. Then VCRM is applied to investigate the properties of the rainbows formed by a spheroidal (prolate or oblate) particle. It is shown that VCRM can predict analytically the positions and the intensity of supernumerary bows and the peaks due to the focal effect when it is illuminated by a plane wave in the symmetrical plane.The theoretical research results have been also applied to the experimental characterization of a pendant drop. The intensity ratio of the two first orders of rainbow is shown sensible to the aspect ratio of the equivalent spheroid and it opens a potential to develop a measurement technique to characterize the deformation of pendant drop.

Page generated in 0.0895 seconds