• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 7
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 64
  • 64
  • 64
  • 16
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Structure-Activity Relationship Studies of Sphingosine Kinase Inhibitors and Mitochondrial Uncouplers

Childress, Elizabeth Saunders 19 July 2017 (has links)
Sphingosine 1-phosphate (S1P) is a cellular signaling molecule that has been implicated in a variety of diseases including cancer, fibrosis, Alzheimer's, and sickle cell disease. It is formed from the phosphorylation of sphingosine (Sph) by sphingosine kinase (SphK) and SphK exists as two isoforms-"SphK1 and SphK2, which differ with respect to their cellular activity and localization. As the key mediators in the synthesis of S1P, SphKs have attracted attention as viable targets for pharmaceutical inhibition. To validate their potential as therapeutic targets, we aimed to develop potent, selective, and in vivo active inhibitors of SphK. Herein, we describe the design, synthesis and biological evaluation of SphK2 inhibitors. We first describe the development of six SphK2 inhibitors that assess the utility of replacing lipophilic tail groups with heterocyclic rings. These six compounds demonstrate that the lipid binding pocket for SphK2 cannot accommodate compounds with tail groups that are conformationally restricted or positively charged. We then describe the development of aminothiazole-based analogues of an SphK1-selective inhibitor. A library of 37 aryl-substituted aminothiazole tail groups were synthesized, revealing a structure-activity relationship study that examines electronic effects on the aryl-substituted aminothiazoles and the effect of modifying the amino portion of the aminothiazole. These molecules show surprisingly good potency and selectivity for SphK2. In particular, we highlight 3.20dd (SLC4101431), a biphenyl aminothiazole that is the post potent and selective SphK2 inhibitor to date, with an SphK2 Ki of 90 nM and 100-fold selectivity for SphK2. This molecule's in vivo activity will also be discussed. Mitochondrial uncouplers are small molecules that shuttle protons from the inter membrane space to the mitochondrial matrix independent of ATP synthase, which disrupts oxidative phosphorylation and promotes increased nutrient metabolism for homeostasis to be maintained. Consequently, small molecule mitochondrial uncouplers have been pursued as probes for mitochondrial function and as potential therapeutics for the treatment of obesity and type 2 diabetes. Herein, we describe the design, synthesis, and biological evaluation of small molecule mitochondrial uncouplers. We report a library of 52 compounds that have good mitochondrial uncoupling activity over a wide therapeutic range, including 5.16t (SHC4111522) and 5.17i (SHC4091665), which have EC50 values of 0.63 uM and 1.53 uM, respectively, and achieve at least 2-fold increase in oxygen consumption rates relative to basal levels. With these molecules, we demonstrate that pKa and cLogP significantly contribute to uncoupling activity and must be accounted for when developing new generation small molecule mitochondrial uncouplers. / Ph. D.
42

Sphingosine-1-Phosphate and Stromal Cells Contribute to an Aggressive Phenotype of Ovarian Cancer

Guinan, Jack Henry 26 June 2017 (has links)
Metastasis remains the largest contributor for ovarian cancer mortality. The five-year survival rate decreases dramatically as the disease advances from the primary tumor site to other organ sites within the peritoneal cavity. Thus, characterizing the mechanisms behind this metastatic potential may better elucidate the molecular mechanisms of ovarian cancer progression and may reveal novel targets for preventative and therapeutic treatments. Sphingosine-1-phosphate (S1P) is a critical secondary messenger responsible for many pro-cancer signals, e.g., proliferation, angiogenesis, inflammation, anti-apoptosis, and others. While S1P's role in the aggressive profile of many other cancers is well defined, its function in ovarian cancer development is less understood. The concentration of S1P is significantly increased in the ascites of women with malignant ovarian cancer, suggesting a role in ovarian cancer progression. This study aims to understand the importance of S1P in ovarian cancer metastasis. Using our well-characterized murine cell model for progressive ovarian cancer, we investigate the impact of S1P on ovarian cells and their interactions with the stromal vascular fraction recruited from the adipose tissue in culture conditions that mimic the physiologic environment of the peritoneal cavity. These studies will provide a mechanistic link of obesity, inflammation, and the increased risk of obese women to develop and die from ovarian cancer and identify signaling events as targets for interventions. / Master of Science
43

Caractérisation fonctionnelle des cellules souches cardiaques humaines dans un but thérapeutique / Functional characterization of the human cardiac stem cells

Ayad, Oualid 12 December 2017 (has links)
L'objectif de cette thèse était de développer et de caractériser un modèle de cellules souches cardiaques humaines dans un contexte de thérapie cellulaire. Après avoir sélectionné et caractérisé une population de cellules souches d'origine mésenchymateuse, isolée à partir d'auricules humaines, exprimant le marqueur W8B2 (CSCs W8B2+), nous nous sommes focalisés (par les techniques de RT-qPCR à haut rendement, d'immuno-marquage, de western-blot et de fluorescence calcique) sur ; 1. la caractérisation génique des canaux ioniques et des acteurs de la signalisation calcique et 2. l'étude de leur différenciation in vitro en parallèle à l'activité calcique intracellulaire. Les résultats montrent que CSCs W8B2+ tendent à se différencier en cellules pacemaker. Certains gènes spécifiques nodaux, comme Tbx3, HCN, ICaT,L, Kv, NCX, s'expriment durant la différenciation. L'enregistrement de l'activité calcique (via une sonde optogénétique) montre la présence d'oscillations calciques qui évoluent en fréquence et en intensité pendant la différenciation. Les stocks-IP3 sensibles et l'échangeur NCX joueraient un rôle fondamental.Nous avons ensuite étudié l'importance du canal BKCa et des récepteurs sphingosine 1-phosphate (S1P) dans la régulation des propriétés fondamentales des CSCs W8B2+. L'inhibition du BKCa diminue la prolifération cellulaire en accumulant les cellules à la phase G0/G1, réprime l'auto-renouvellement mais n'affecte pas la migration. Quant à la S1P elle freine la prolifération et l'auto-renouvellement via une voie différente de celles des récepteurs S1P1,2,3.Ce travail fait ressortir des cibles moléculaires fondamentales dans un contexte de thérapie cellulaire cardiaque. / The aim of this thesis was to develop and characterize a model of human heart stem cells in a context of cell therapy.A population of mesenchymal stem cells, expressing the W8B2 marker (CSCs W8B2+), was first isolated from human auricles and characterized using high-throughput RT-qPCR techniques, immuno-labeling, western-blot and calcium fluorescence imaging. These experiments were focused on 1. the gene expression of ion channels and calcium signaling proteins; and 2. the study of CSCs W8B2+ in vitro differentiation and associated intracellular calcium activity changes.The results show that CSCs W8B2+ tend to differentiate into pacemaker cells. Some nodal specific genes such as Tbx3, HCN, ICaT, L, Kv, NCX, are expressed during differentiation. The recording of calcium activity (via an optogenetic probe) shows the presence of calcium oscillations that change in frequency and intensity during differentiation. IP3 sensitive calcium stocks and the NCX exchanger would play a fundamental role in these variations.Then we studied the importance of the BKCa channel and the sphingosine 1-phosphate (S1P) receptors in the regulation of the fundamental properties of the W8B2+ CSCs. Inhibition of BKCa reduces cell proliferation by accumulating cells in the G0 / G1 phase, suppresses cell self-renewal but does not affect migration properties. Concerning S1P, it decreases proliferation and self-renewal without stimulate S1P1,2,3 receptors.This work highlights fundamental potential molecular targets in a context of cardiac cell therapy.
44

Rôle de la voie sphingosine kinase 1/sphingosine 1-phosphate dans l'adaptation à l'hypoxie intratumorale des adénocarcinomes rénaux à cellules claires / Role of the sphingosine kinase 1/sphingosine 1-phosphate pathway in the adaptation to intratumoral hypoxia in clear cell renal cell carcinoma

Gstalder, Cécile 08 July 2015 (has links)
Les adénocarcinomes rénaux à cellules claires (ccRCC), qui représentent 70% des tumeurs rénales, sont fortement mais irrégulièrement vascularisés, ce qui les rend hypoxiques et donc résistants aux chimiothérapies. L'hypoxie favorise l'agressivité tumorale via l'activation des facteurs de transcription HIF-1alpha et HIF-2alpha (Hypoxia-Inducible Factors). Pour cette raison, le ciblage de l'hypoxie intratumorale et des facteurs HIF dans les ccRCC constitue une stratégie thérapeutique pertinente. Dans ce projet, nous montrons pour la première fois que la voie sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) régule HIF-2alpha in vitro et in vivo. Nos résultats indiquent que la SphK1 régule le taux intracellulaire et l'activité transcriptionnelle de HIF-2alpha dans des lignées de ccRCC représentatives de certains sous-groupes retrouvés en clinique humaine ; et impliquent la S1P extracellulaire, via le récepteur S1P1, dans la régulation de HIF-1alpha et HIF-2alpha. D'autre part, nous avons évalué l'impact de l'inhibition des récepteurs à S1P et de la SphK1 par le FTY720 dans un modèle de ccRCC in vivo. Nos résultats indiquent que le FTY720 entraine une diminution transitoire du taux intratumoral de HIF-1alpha et HIF-2alpha ainsi qu'un remodelage du réseau vasculaire tumoral. En effet, le FTY720 induit une normalisation vasculaire qui aboutit à une oxygénation tumorale transitoire. Enfin, nous montrons que ce traitement permet de sensibiliser un modèle murin de ccRCC à la chimiothérapie. Ces résultats valident le rôle de la voie SphK1/S1P comme régulateur de l'adaptation à l'hypoxie dans les ccRCC. Ils constituent une étape indispensable à la transposition en clinique humaine du concept selon lequel la voie SphK1/S1P peut être ciblée afin de diminuer l'hypoxie intratumorale et de chimiosensibiliser certains cancers, le FTY720 étant déjà sur le marché. / Clear cell renal cell carcinomas (ccRCC) represent 70% of renal tumors. Because of their dense and irregular vascular network, ccRCC become hypoxic and therefore resistant to chemotherapies. Hypoxia promotes tumor aggressiveness via the activation of HIF-1alpha and HIF-2alpha (Hypoxia-Inducible Factors). For this reason, the control of intratumoral hypoxia and HIF in ccRCC could be a relevant therapeutic strategy to improve the efficacy of current treatments. In this study, we show for the first time that the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway regulates HIF-2alpha in vitro and in vivo. Our results indicate that SphK1 regulates HIF-2alpha intracellular level and transcriptional activity in ccRCC cell lines that are representative of some clinical ccRCC subgroups. Our data also involve extracellular S1P, via its receptor S1P1, in the regulation of HIF-1alpha and HIF-2alpha. In addition, in a ccRCC mouse model, we show that FTY720 - an inhibitor of the SphK1/S1P pathway- transiently decreases HIF-1alpha and HIF-2alpha intratumoral level. This is associated with a transient remodeling of the tumor vascular network indicating that FTY720 induces a vascular normalization that leads to transient tumor oxygenation. Finally, we show that this treatment sensitizes a ccRCC mouse model to chemotherapy. Overall, these results validate the key role of the SphK1/S1P pathway in the adaptation to hypoxia in ccRCC cell and animal models. Our results provide a mechanistic basis to target the SphK1/S1P pathway with FTY720 by increasing the efficacy of chemotherapy in ccRCC. They are a prerequisite for clinical transposition as FTY720 is a drug approved used in human clinic.
45

Simvastatin-induced sphingosine 1−phosphate receptor 1 expression is KLF2-dependent in human lung endothelial cells

Sun, Xiaoguang, Mathew, Biji, Sammani, Saad, Jacobson, Jeffrey R., Garcia, Joe G. N. 21 March 2017 (has links)
We have demonstrated that simvastatin and sphingosine 1-phosphate (S1P) both attenuate increased vascular permeability in preclinical models of acute respiratory distress syndrome. However, the underlying mechanisms remain unclear. As Kruppel-like factor 2 (KLF2) serves as a critical regulator for cellular stress response in endothelial cells (EC), we hypothesized that simvastatin enhances endothelial barrier function via increasing expression of the barrier-promoting S1P receptor, S1PR1, via a KLF2-dependent mechanism. S1PR1 luciferase reporter promoter activity in human lung artery EC (HPAEC) was tested after simvastatin (5 mu M), and S1PR1 and KLF2 protein expression detected by immunoblotting. In vivo, transcription and expression of S1PR1 and KLF2 in mice lungs were detected by microarray profiling and immunoblotting after exposure to simvastatin (10 mg/kg). Endothelial barrier function was measured by trans-endothelial electrical resistance with the S1PR1 agonist FTY720-(S)-phosphonate. Both S1PR1 and KLF2 gene expression (mRNA, protein) were significantly increased by simvastatin in vitro and in vivo. S1PR1 promoter activity was significantly increased by simvastatin (P < 0.05), which was significantly attenuated by KLF2 silencing (siRNA). Simvastatin induced KLF2 recruitment to the S1PR1 promoter, and consequently, significantly augmented the effects of the S1PR1 agonist on EC barrier enhancement (P < 0.05), which was significantly attenuated by KLF2 silencing (P < 0.05). These results suggest that simvastatin upregulates S1PR1 transcription and expression via the transcription factor KLF2, and consequently augments the effects of S1PR1 agonists on preserving vascular barrier integrity. These results may lead to novel combinatorial therapeutic strategies for lung inflammatory syndromes.
46

Novel Mechanisms Regulating Cytokine-induced Gene Expression in Astrocytes and Glioblastoma Cells

Bryan, Lauren 15 April 2009 (has links)
Chronic inflammation in the brain results in the development of several CNS diseases, including Alzheimer’s and Parkinson’s diseases, multiple sclerosis, and tumors. IL-1, a pro-inflammatory cytokine released by activated microglia and astrocytes, instigates the expression of factors promoting the progression of these CNS disorders, including cytokines, chemokines, and components of matrix remodeling systems, such as the plasminogen activator system. IL-1 also increases the mRNA expression and activity of SphK, the enzyme that phosphorylates Sph to form S1P, a bio-active sphingolipid. This thesis demonstrates that IL-1 and S1P enhance the mRNA and protein expression of PAI-1 and uPAR, two key components of the plasminogen activator system, in glioblastoma cells. The S1P-induced mRNA expression of PAI-1 and uPAR is mediated by the S1P2 receptor, and requires Rho-kinase and MEK1. However, IL-1 regulation of PAI-1 and uPAR mRNA expression is independent of SphK, and thus S1P. IL-1- and S1P-induced mRNA expression of PAI-1 and uPAR results in the increased in vitro invasion of glioblastoma cells. Since significant amounts of IL-1 are secreted from gliomas, and it increases the production of S1P via inciting the activity and mRNA expression of SphK, we propose a mechanism by which S1P and IL-1 influence the invasion of glioblastoma cells by increasing the mRNA and protein expression of uPAR and PAI-1. IL-1 and S1P also influence the mRNA expression of chemokines implicated in the development and progression of multiple sclerosis, namely IP-10 and RANTES, in primary human astrocytes. IP-10 and RANTES attract T cells, which are the major pathological cause of multiple sclerosis. This thesis demonstrates a novel mechanism by which S1P significantly inhibits the IL-1-induced mRNA expression of these chemokines. The mechanism by which S1P reduces IL-1-induced IP-10 and RANTES mRNA expression involves the prolonged hyperphosphorylation of TAK1, as well as the inhibition of IL-1-stimulated IFN beta production and the phosphorylation of STAT1 and STAT2. In summary, this dissertation describes the mechanisms by which S1P and IL-1 control the mRNA expression of two chemokines associated with multiple sclerosis, and the components of the plasminogen activator system, which are critical for the invasion of glioblastoma cells; thus, indicating future therapeutic targets for destructive CNS disorders.
47

Sphingosine-1-phosphate in mast cell-mediated allergic responses

Price, Megan 27 July 2011 (has links)
Mast cells play a critical role in both acute and chronic inflammation and mature in peripheral tissues from bone marrow-derived progenitors that circulate in the blood as immature precursors. Mast cell progenitors are likely to encounter the serum-borne bioactive sphingolipid metabolite, sphingosine-1-phosphate (S1P), during migration to target tissues. Mast cells developed from human cord blood-derived progenitors cultured with stem cell factor (SCF) alone express intragranular tryptase (MCT), the phenotype predominant in the lung. S1P accelerated the development of cord blood-derived mast cells (CB-MCs) and strikingly increased the numbers of mast cells expressing chymase. These mast cells have functional FcepsilonRI, and similar to skin mast cells that express both tryptase and chymase (MCTC), also express CD88, the receptor for C5a, and are activated by anaphylatoxin C5a and the secretagogue compound 48/80. S1P induced release of IL-6, a cytokine known to promote development of functionally mature MCTC, from cord blood cultures containing adherent macrophages, and from highly purified macrophages, but not from macrophage-depleted CB-MCs. In contrast, S1P stimulated secretion of the chemokine, monocyte chemoattractant protein 1 (MCP-1/CCL2), from these macrophage-depleted and purified CB-MCs.
48

Conjugated Bile Acid and Sphingosine 1-phosophate prompt Cholangiocarcinoma Cell Growth via Releasing Exosomes

Alruwaili, Waad A 01 January 2019 (has links)
Cholangiocarcinoma (CCA) is a fatal primary malignancy that is formed in the bile ducts. Cancer-associated myofibroblasts play a crucial role in CCA proliferation and invasion. Furthermore, there is a growing interest in the role of the exosome in the interaction between the cancer-associated myofibroblasts and cholangiocarcinoma which lead to CCA growth. However how cholangiocarcinoma-derived exosome affect the cancer-associated myofibroblasts in the tumor microenvironment remain unknown. In this study, we examined whether exosome produced by cholangiocarcinoma could involve in the prompt of CCA cells growth by regulation of myofibroblast. We found that cholangiocarcinoma-derived exosome could prompt elevated α-smooth muscle actin and stromal cell-derived factor one expression that induces myofibroblast proliferation. We then demonstrated that cholangiocarcinoma-derived exosome upregulated periostin expression that plays an important role in cancer metastasis. In 3D organotypic rat CCA coculture model, TCA and S1P considerably increase the growth of CCA cell. Conclusion: cholangiocarcinoma-derived exosome trigger cancer-associated myofibroblasts proliferation in the tumor microenvironment that leads to prompt CCA growth.
49

Sphingosine kinase 1 expression is involved in leukemogenesis and modulates cellular sphingolipid rheostat, which is a good predictive marker of daunorubicin sensitivity

祖父江, 沙矢加, SOBUE, Sayaka 25 March 2008 (has links)
名古屋大学博士学位論文 学位の種類:博士(医療技術学)(課程) 学位授与年月日:平成20年3月25日
50

Palmitate-induced Apoptosis in Insulin-producing β-cells

Thörn, Kristofer January 2010 (has links)
Type 2 diabetes is a disease characterized by the inability of pancreatic β-cells to secrete sufficient amounts of insulin to maintain normoglycemia. Increased levels of saturated fatty acids such as palmitate are believed to contribute to β-cell failure and the development of the disease. In the present thesis, mechanisms behind palmitate-induced β-cell apoptosis were explored. Palmitate augmented insulin secretion after short exposure to the fatty acid, but attenuated the secretory response after longer exposure. Elevated levels of palmitate increased endoplasmic reticulum (ER) stress and induced apoptosis. When insulin secretion was inhibited by diazoxide, palmitate-induced ER stress and apoptosis were reduced. In comparison to palmitate, the mono-unsaturated fatty acid oleate increased neither ER stress nor apoptosis. Furthermore, shuttling of fatty acids into triglycerides and β-oxidation was favored in cells exposed to oleate compared to palmitate. When the levels of stearoyl-CoA desaturase 1 (SCD1), the enzyme responsible for conversion of saturated to mono-unsaturated fatty acids, were reduced, up-regulation of ER chaperones and components of the proteasome was observed. Cells with reduced levels of SCD1 showed increased sensitivity to palmitate, as exposure to the fatty acid increased levels of ER stress and apoptosis. Palmitate-induced apoptosis of the β-cell has been linked to alterations in sphingolipid metabolism. In cells with reduced levels of sphingosine kinase (SphK) 2, palmitate failed to induce apoptosis, and ER stress was reduced. Furthermore, SphK2 was required for the palmitate-induced activation of c-Jun N-terminal kinase (JNK). In contrast, knockdown of SphK1 sensitized the cell to palmitate-induced apoptosis independently of ER stress. In summary, palmitate induces β-cell apoptosis, which is partly dependent on the induction of ER stress. The mechanisms investigated support the notion that increased protein load on the ER, low degree of triglyceride formation and β-oxidation, and perturbations in sphingolipid metabolism contribute to palmitate-induced apoptosis in insulin-producing β-cells.

Page generated in 0.0823 seconds