• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spiking Neural P Systems Simulation and Verification

Lefticaru, Raluca, Gheorghe, Marian, Konur, Savas, Niculescu, I.M., Adorna, H.N. 08 December 2021 (has links)
Yes / Spiking Neural (SN) P systems is a particular class of P systems that abstracts and applies ideas from neurobiology. Various aspects, representations and features have been studied extensively, but the tool support for modelling and analysing such systems is relatively limited. In this paper, we present a methodology that maps some classes of SN P systems to the equivalent kernel P system representations, which allows analysing SN P system dynamics using the kPWORKBENCH tool. We illustrate the applicability of our approach in some case studies, including an example system from synthetic biology.
2

Spiking neural P systems: matrix representation and formal verification

Gheorghe, Marian, Lefticaru, Raluca, Konur, Savas, Niculescu, I.M., Adorna, H.N. 28 April 2021 (has links)
Yes / Structural and behavioural properties of models are very important in development of complex systems and applications. In this paper, we investigate such properties for some classes of SN P systems. First, a class of SN P systems associated to a set of routing problems are investigated through their matrix representation. This allows to make certain connections amongst some of these problems. Secondly, the behavioural properties of these SN P systems are formally verified through a natural and direct mapping of these models into kP systems which are equipped with adequate formal verification methods and tools. Some examples are used to prove the effectiveness of the verification approach. / EPSRC research grant EP/R043787/1; DOST-ERDT research grants; Semirara Mining Corp; UPD-OVCRD;
3

Proceedings of the Workshop on Membrane Computing, WMC 2016.

Konur, Savas, Gheorghe, Marian 08 1900 (has links)
yes / This Workshop on Membrane Computing, at the Conference of Unconventional Computation and Natural Computation (UCNC), 12th July 2016, Manchester, UK, is the second event of this type after the Workshop at UCNC 2015 in Auckland, New Zealand*. Following the tradition of the 2015 Workshop the Proceedings are published as technical report. The Workshop consisted of one invited talk and six contributed presentations (three full papers and three extended abstracts) covering a broad spectrum of topics in Membrane Computing, from computational and complexity theory to formal verification, simulation and applications in robotics. All these papers – see below, but the last extended abstract, are included in this volume. The invited talk given by Rudolf Freund, “P SystemsWorking in Set Modes”, presented a general overview on basic topics in the theory of Membrane Computing as well as new developments and future research directions in this area. Radu Nicolescu in “Distributed and Parallel Dynamic Programming Algorithms Modelled on cP Systems” presented an interesting dynamic programming algorithm in a distributed and parallel setting based on P systems enriched with adequate data structure and programming concepts representation. Omar Belingheri, Antonio E. Porreca and Claudio Zandron showed in “P Systems with Hybrid Sets” that P systems with negative multiplicities of objects are less powerful than Turing machines. Artiom Alhazov, Rudolf Freund and Sergiu Ivanov presented in “Extended Spiking Neural P Systems with States” new results regading the newly introduced topic of spiking neural P systems where states are considered. “Selection Criteria for Statistical Model Checker”, by Mehmet E. Bakir and Mike Stannett, presented some early experiments in selecting adequate statistical model checkers for biological systems modelled with P systems. In “Towards Agent-Based Simulation of Kernel P Systems using FLAME and FLAME GPU”, Raluca Lefticaru, Luis F. Macías-Ramos, Ionuţ M. Niculescu, Laurenţiu Mierlă presented some of the advatages of implementing kernel P systems simulations in FLAME. Andrei G. Florea and Cătălin Buiu, in “An Efficient Implementation and Integration of a P Colony Simulator for Swarm Robotics Applications" presented an interesting and efficient implementation based on P colonies for swarms of Kilobot robots. *http://ucnc15.wordpress.fos.auckland.ac.nz/workshop-on-membrane-computingwmc- at-the-conference-on-unconventional-computation-natural-computation/

Page generated in 0.1318 seconds