Spelling suggestions: "subject:"spin artificiell"" "subject:"spin artificiels""
1 |
A new artificial spin system : the dipolar 4-state Potts model / Un nouveau système de spins artificiels : le modèle de Potts dipolaire à 4 étatsLouis, Damien 26 October 2016 (has links)
Depuis la proposition en 2006 d’utiliser des nano aimants réalisés par des techniques top-down pour reproduire des « spins artificiels », l’étude des systèmes de spins artificiels a suscité un large intérêt. En effet la possibilité de pouvoir réaliser arbitrairement tous types de réseaux de spins artificiels et de pouvoir imager les configurations magnétiques de ceux-ci dans l’espace direct, offre un large terrain de jeu dans le domaine de la physique statistique. Jusqu’à présent seuls des réseaux de spins d’Ising, multi axes (réseaux kagomé ou carré avec une aimantation planaire) ou plus récemment uni axes (avec une anisotropie perpendiculaire), ont été étudiés. Cependant en physique statistique d’autres modèles de spins sont étudiés et notamment les modèles de Potts à q-états. Au cours de cette thèse nous avons étudié le cas d’un modèle de Potts à 4 états, ayant la particularité de posséder uniquement des interactions dipolaires entre les spins: le modèle de Potts dipolaire. Nous avons tout d’abord réalisé une étude théorique, montrant que sur un réseau carré, en fonction de l’angle entre les spins et ce réseau, le système possède des états fondamentaux très différents : un ordre antiferromagnétique, un ordre respectant les règles de la glace (2 in- 2 out) ou un ordre ferromagnétique. Dans une deuxième partie, nous avons exposé l’étude expérimentale du modèle de Potts dipolaire. Des réseaux formés d’aimants carrés ayant 300 nm de côté ont été réalisés par lithographie électronique, à partir d’une couche épitaxiée de Fer possédant une anisotropie quadratique. A température ambiante, ces plots possèdent une configuration magnétique monodomaine pouvant prendre 4 directions équivalentes, comme recherché pour le modèle de Potts dipolaire à 4 états. Un passage à 350°C (inférieure à la température de Curie) sous champ nul permet d’activer thermiquement la réorientation des spins afin qu’ils se rapprochent de l’état fondamental de l’assemblée de spins. Les configurations magnétiques observées après recuit, à l’aide d’un microscope à force magnétique, montrent l’importance du couplage dipolaire sur les états obtenus, ainsi que l’influence de l’angle entre les spins et l’axe du réseau. Les différentes configurations prédites théoriquement sont bien observées / Since the proposal in 2006 to use nanomagnets patterned by top-down techniques to mimic "artificial spins", the studies of artificial spin systems has attracted wide interest. As a matter of facts, the possibility to design "upon request" arbitrary network and the possibility to determine completely the "spin" configuration with magnetic imaging offer a wide playground for statistical physics. Up to now only Ising spin systems, multi axes with planar magnetization (on square or Kagome lattice) or more recently, single axis with perpendicular anisotropy, have been studied. However, beyond Ising spins, statistical physics and condensed matter physics have shown the interest of other spin models like q-state Potts models. In this thesis, we introduce the dipolar 4-state Potts model. It is shown that on a square lattice, depending on the angle between spins and lattice, the system present very different properties like antiferromagnetic order, spin ice state (2 in-2 out ice rule) and even dipolar ferromagnetism. This model has been realized experimentally. 300 nm square magnets are patterned from a 2 nm thick Fe layer with cubic anisotropy. At room temperature, the magnets present a uniform state with 4 equivalent directions. Upon heating at 350 °C the magnets switch from one direction to another. It is therefore possible to simply drive the system toward its ground state. The magnetic configurations determined by magnetic force microscopy reveals the importance of the dipolar coupling as the different expected ground states (antiferromagnetic, spin ice and ferromagnetic) are indeed observed. It is noticeable that these very different properties are obtained with the same "spins" (magnetic elements) and same lattice
|
Page generated in 0.0382 seconds