• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 1
  • Tagged with
  • 57
  • 57
  • 50
  • 14
  • 14
  • 13
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spin-lattice relaxation and atomic motions in LiF

Wagner, Jerome, January 1970 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1970. / Typescript. Vita. Description based on print version record. Includes bibliographical references.
12

Nuclear Quadrupole Resonance And Relaxation Studies In Chloropyridines And High Pressure Studies In Chlorates

Amdjadi, Mohammed Hossein Ala 12 1900 (has links) (PDF)
No description available.
13

Spin-lattice relaxation of a 2E Jahn-Teller system.

Vincent, Claude. January 1973 (has links)
No description available.
14

Studies on the preparation and characterization of novel water-soluble catalysts /

Bunn, Barbara B., January 1993 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1993. / Vita. Abstract. Includes bibliographical references (leaves 121-127). Also available via the Internet.
15

Some applications of electronic measuring tehcniques to the study of nuclear magnetism at low temperatures : a study of spin-lattice relaxation in solid He³ at temperatures below 1⁰K with special attention to the effects of He⁴

Giffard, R. P. January 1968 (has links)
No description available.
16

NMRON studies of insulating magnetic materials

Le Gros, Mark January 1990 (has links)
Selective excitation pulsed NMRON, CW-NMRON and Thermal NMR methods have been used to study the low temperature ⁵⁴Mn nuclear spin-lattice relaxation mechanisms in magnetic insulators. The selective single and double quantum excitation sequences have been used for the first time in NMRON to obtain single and double quantum rotation patterns, Free Induction Decays, Hahn spin echoes and pulsed T₁ measurements. Two insulating magnets have been studied; MnCl₂.4H₂O and Mn(COOCH₃ )₂ .4H₂O. In the ⁵⁴Mn-MnCl₂ .4H₂O system the temperature dependence of the ⁵⁴Mn spin-lattice relaxation time at zero field was measured between 35 mK and 90 mK and it was found that the dominant relaxation process between 65 mK and 90 mK is an electronic magnon Raman process and below 65 mK a direct relaxation process dominates. Single and double quantum Free Induction Decays and Hahn spin echoes have been used to determine the magnitude and nature of the spin-spin relaxation mechanism for ⁵⁴Mn oriented in MnCl₂.4H₂O at zero applied field. NMRON was observed for the first time in the paramagnetic phase of MnCl₂.4H₂O. The resonance lines are inhomogeneously broadened and 300 kHz wide. A value of <⁵⁴AS>/h=-513.6(3) MHz has been determined for the paramagnetic phase hyperfine coupling constant, and this value has been used to determine the zero point spin deviation of the antiferromagnetic phase. The field and temperature dependence of the ⁵⁴Mn T₁ was measured for values of field above the spin flop paramagnetic phase transition and a field dependent T₁ minimum was discovered at Ba=2.64 T. For the ⁵⁴Mn-Mn(COOCH₃) .4H₂O system two ⁵⁴Mn resonances have been observed and the value of the hyper fine coupling constants for the two sites were found to be <⁵⁴AS>/h=-435 (1) MHz for the ⁵⁴Mn1 site and <⁵⁴AS>/h=-478(1) MHz for the ⁵⁴Mn2 site. The high field spin-lattice relaxation behavior has also been investigated and a T₁ minimum at Ba =2.74 T analogous to that observed in MnCl₂ .4H₂O was discovered. A Hahn echo study of the low field single quantum spin-spin relaxation processes has been performed and anomalous behavior of the spin echo amplitude revealed. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
17

Nuclear orientation studies of spin-lattice relaxation and hyperfine fields in ferromagnetic dilute alloys

Kieser, Robert January 1975 (has links)
Nuclear magnetic resonance experiments on impurity atoms in a ferromagnetic host have shown that the measured spin-lattice relaxation time of those nuclei located in domains is strongly dependent on the degree of magnetic saturation of the host material (1, 2, 3). The relaxation time increases as the applied magnetic field is increased and reaches a constant value for a magnetically saturated specimen. Wall nuclei show a much shorter relaxation time than those in the bulk. This fact, together with the increased number of walls present in a magnetically non-saturated specimen could explain the observed field-dependent decrease of the relaxation time if an increasing fraction of wall nuclei is observed. Nuclei located in walls experience a much larger enhancement than those in domains. Therefore special techniques have to be applied to exclusively observe nuclei located in the bulk (1, 4). For this reason some uncertainty exists in the interpretation of the nuclear magnetic resonance measurements. The theory of the spin-lattice relaxation in ferromagnetic metals (5) gives an estimate for the relaxation rate observed in magnetically saturated specimens. No field dependence the relaxation time is predicted. Partly due to the uncertainty in the NMR results, this theoretical problem has received little attention so far. We therefore have employed low temperature nuclear orientation which predominantly measures bulk nuclei to investigate this problem. In most of these experiments the combined technique of nuclear orientation and nuclear magnetic resonance (NMR/ON) (6) has been applied td prepare the initial state from which the relaxation takes place. Some experiments have also been performed by an entirely non-resonant technique (7). Our experimental results on ⁶⁰Co-Fe, ⁵⁴Mn-Fe and ⁵⁴Mn-Ni clearly confirm the field dependence of the relaxation time observed in nuclear magnetic resonance experiments (8). Thus the need for a detailed theoretical study is evident. Performing an NMR/ON experiment the resonance is detected by a change in the observed y-ray intensity. Resonance lines for ⁶⁰Co-Fe, ⁵⁴Mn-Fe and ⁵⁴Mn-Ni have been recorded. We have for the first time observed that their full widths at half maximum show a strong field dependence. An explanation in terms of a local distribution in the demagnetizing field is offered. We have also measured the intensity of the resonance line as a function of the applied field. An estimate shows that this is inadequately explained in terms of the expected field dependence of the enhancement factor. The distribution of hyperfine fields has never before been studied by NMR/ON. We have employed this technique successfully to investigate an alloy of one atomic percent ⁵⁹Co-Fe which has been doped with a small amount of ⁶⁰Co. A strong, well resolved satellite line of the impurity nuclei is observed. These data are interpreted in terms of the effect of near neighbor impurity nuclei on the hyperfine field (9, 10). We have computed a theoretical curve based on parameters given in the literature (10). This provides a moderately good fit for most portions of our spectra. This pilot study demonstrates that NMR/ON is indeed a valuable tool for the investigation of hyperfine field distributions. The advantages over nuclear magnetic resonance studies are that essentially only bulk as compared to wall nuclei are studied and that the sensitivity is independent of the alloy concentration. Based partially on our own data we present a short discussion of the question whether a spin temperature is maintained by the impurity nuclei during relaxation. Finally we offer a comparison between relaxation data measured by NMR/ON and other nuclear orientation techniques (11). For ⁶⁰Co-Fe the relaxation times measured by NMR/ON are found to be almost 50% longer than those measured by techniques in which the initial condition is known. This discrepancy is generally attributed to the incomplete knowledge of the initial conditions when the NMR/ON technique is employed. We have computed theoretical relaxation curves for a number of initial conditions and find that the resulting spread in relaxation time for those curves that allow a good fit to the measured curve is larger than the difference obtained from the experiments. Thus our model indeed could explain the observed discrepancy. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
18

Spin-lattice relaxation of a 2E Jahn-Teller system.

Vincent, Claude. January 1973 (has links)
No description available.
19

Nuclear Magnetic Relaxation in Arbitrary Spin Systems

Selwyn, Lyndsie Susan January 1979 (has links)
Note:
20

Applications of vibrational spectroscopy and NMR spin-lattice relaxation time measurements to organometallic and organic molecular crystals

Harvey, Pierre Dominique. January 1985 (has links)
No description available.

Page generated in 0.0658 seconds