• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physiological and molecular functions of the murine receptor protein tyrosine phosphatase sigma (RPTP[sigma])

Chagnon, Mélanie J., 1977- January 2008 (has links)
The control of cellular tyrosine phosphorylation levels is of great importance in many biological systems. Among the kinases and phosphatases that modulate these levels, the LAR-RPTPs have been suggested to act in several key aspects of neural development, and in a dysfunctional manner in various pathologies from diabetes to cancer. The aim of this thesis is to describe the physiological functions of one of the members of this subfamily of RPTPs, namely RPTPsigma. First, we showed that glucose homeostasis is altered in RPTPsigma null mice. They are hypoglycemic and more sensitive to exogenous insulin and we proposed that the insulin hypersensitivity observed in RPTPsigma-null mice is likely secondary to their neuroendocrine dysplasia and GH/IGF-1 deficiency. In addition to regulating nervous system development, RPTPsigma was previously shown to regulate axonal regeneration after injury. In the absence of RPTPsigma, axonal regeneration in the sciatic, facial and optical nerves was enhanced following nerve crush. However, myelin-associated growth inhibitory proteins and components of the glial scar such as CSPGs (chondroitin sulfate proteoglycans) have long been known to inhibit axonal regeneration in the CNS, making spinal cord injury irreversible. In collaboration with Dr Samuel David, we unveiled that RPTPsigma null mice are able to regenerate their corticospinal tract following spinal cord hemisections as opposed to their WT littermates. We then isolated primary neurons from both sets of animals and found that the absence of RPTPsigma promotes the ability of the neurons to adhere to certain inhibitory substrates. Finally, in order to better understand the physiological role of RPTPsigma, we used a yeast substrate-trapping approach, to screen a murine embryonic library for new substrates. This screen identified the RhoGAP p250GAP as a new substrate, suggesting a downstream role for RPTPsigma in RhoGTPase signaling. We also identified p130Cas and Fyn as new binding partners. All these proteins have clear functional links to neurite extension. The characterization of RPTPsigma and its signaling partners is essential for understanding its role in neurological development and may one day translate into treatments of neural diseases and injuries.
2

Physiological and molecular functions of the murine receptor protein tyrosine phosphatase sigma (RPTP[sigma])

Chagnon, Mélanie J., 1977- January 2008 (has links)
No description available.

Page generated in 0.3768 seconds