• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 19
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 61
  • 23
  • 15
  • 15
  • 13
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spinors in discrete space-time

Holm, Jens Christian 05 1900 (has links)
No description available.
2

Uma representação spinorial para a transformação de Kustaanheimo e stiefel

Menon, Maria de Lourdes Tambaschia 11 February 1988 (has links)
Orientador: Jose Bellandi Filho / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-07-14T19:51:42Z (GMT). No. of bitstreams: 1 Menon_MariadeLourdesTambaschia_M.pdf: 3830727 bytes, checksum: ef102dcdb05741dc4a7c9f71c8bf966f (MD5) Previous issue date: 1988 / Resumo: Não informado / Abstract: It is shown how to derive a spinor representation for theory and that this representation has all the characteristic properties of the Levi-Civita transformation. It is also given a geometric interpretation for the spinor representation and the derivation of a spinor equatio for the Kepler motion in R3 / Mestrado / Física / Mestre em Física
3

The hyperspin structure of Einstein universes and their neutrino spectrum

Holm, Christian 08 1900 (has links)
No description available.
4

D=10 Super Yang Mills, D=11 Supergravity and the Pure Spinor Superfield Formalism /

Guillen Quiroz, Luis Max January 2016 (has links)
Orientador: Nathan Berkovits / Banca: Andrey Mikhaylov / Banca: Humberto Gomez / Resumo: E bem conhecido como descrever as terıas de Super Yang-Mills (SYM) em D = 10 dimensões e Supergravidade (SG) em D = 11 dimensões no superespaço e via seus campos componentes. No entanto, uma nova versão desses modelos foi formulada nos finais da década de 2000, quando Martin Cederwall usando o formalismo de supercampo de espinor puro conseguiu construir uma pure spinor ação, que a diferença das anteriores abordagens, esta não precisa de impor constraints a mão, proporciona uma descrição completa de cada modelo (no sentido do formalismo BV) e as equações do movimento obtidas a partir do respectivo principio de ação são supersimétricas. Neste trabalho iremos explicar toda a base necessária para entender a construção de tal formalismo. Para esse propósito, começaremos estudando a teoria SYM (abeliana) em D = 10 em suas formulações em componentes e no superespaço. Usaremos a ação da formulação on-shell para quantizar a teoria via o formalismo de Batalin-Vilkovisky (BV). Seguiremos para SG em D = 11 e estudaremos suas formulações em componentes e no superespaço. Então iremos mostrar que podemos obter o mesmo espectro físico de SYM em D = 10 (SG em D = 11) estudando a superpartícula em D = 10 (D = 11) na calibre do cone de luz. De forma a ter uma quantização covariante desses modelos, introduziremos a superpartícula de espinor puro em D = 10 (D = 11), a qual possui o operador BRST usual de espinor puro (Q = λD). Verificar-se-á que a cohom... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: It is well known how to describe the D = 10 (SYM) Super Yang-Mills and D = 11 (SG) Supergravity theories on superspace and by component fields. However, a new version of these models was formulated in the late 2000, when Martin Cederwall using the pure spinor superfield formalism achieved to construct a pure spinor action for these theories, which unlike the previously mentioned approaches, this does not require to impose any constraint by hand, provides a full description of each model (in the BV sense) and the equations of motion coming from the corresponding action principle are supersymmetric. In this work we will explain all the background required to understand the construction of this action. For this purpose, we will start with the D=10 (abelian) SYM theory in its component and superspace formulations. We will use the action of the on-shell formulation to quantize the theory via the Batalin-Vilkovisky framework. We will move to D=11 supergravity and study its component and superspace formulations. Then we will show that we can obtain the same physical spectrum of D = 10 SYM (D = 11 SG) by studying the D = 10 (D = 11) superparticle in the light-cone gauge. In order to have a covariant quantization of these models, we will introduce the D = 10 (D = 11) pure spinor superparticle, which possesses the usual pure spinor BRST operator (Q = λD). It will turn out that the cohomology of this operator will coincide with the linearized D = 10 SYM (D = 11 SG) theory after being qu... (Complete abstract click electronic access below) / Mestre
5

Clifford algebras, inner products, and spinors /

Heuvers, Konrad J. January 1969 (has links)
No description available.
6

Spinor norms and spinor genera of integral quadratic forms under field extensions /

Earnest, Andrew G. January 1975 (has links)
No description available.
7

Twistor description of null strings

Ilyenko, Kostyantyn January 1999 (has links)
No description available.
8

The algebra of spinors and its applications to quantum mechanics.

Thacker, William Dickey January 1978 (has links)
Thesis. 1978. B.S.--Massachusetts Institute of Technology. Dept. of Physics. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Includes bibliographical references. / B.S.
9

Spinors in general relativity

Grigson, Christopher James January 1970 (has links)
176 leaves : appendices / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--Dept. of Mathematical Physics, University of Adelaide, 1971
10

Spinors in general relativity.

Grigson, Christopher James. January 1970 (has links) (PDF)
Thesis (Ph.D.) -- Dept. of Mathematical Physics, University of Adelaide, 1971.

Page generated in 0.0199 seconds