• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 19
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 61
  • 23
  • 15
  • 15
  • 13
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A algebra do espaço-tempo, o spinor de Dirac-Hestenes e a teoria do eletron

Vaz Júnior, Jayme, 1964- 16 December 1993 (has links)
Orientador: Waldyr A. Rodrigues Jr. / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-07-18T17:46:13Z (GMT). No. of bitstreams: 1 VazJunior_Jayme_D.pdf: 3696074 bytes, checksum: 38c75818b237a8ff519bd3727c669660 (MD5) Previous issue date: 1993 / Resumo: A relação entre a teoria do elétron e o eletromagnetismo é discutida com base no uso da álgebra do espaço-tempo e do spinor de Dirac-Hestenes. Desta relação surge uma equação não-linear como uma alternativa, a princípio mais satisfatória, à equação de Dirac. Este estudo é possível uma vez formulada a teoria do spinor de Dirac-Hestenes como uma classe de equivalência de elementos da sub-álgebra par da álgebra do espaço-tempo. / Abstract: The relationship between the theory of electron and electromagnetism is discussed by using the spacetime algebra and the Dirac-Hestenes spinor. From this relationship it emerges a non-linear equation which seems to be more satisfactory than Dirac equation. This study is possible once it is formulated the theory of Dirac- Hestenes spinor as an equivalence class of elements of the even subalgebra of the spacetime algebra. / Doutorado / Doutor em Matemática Aplicada
32

Exploring properties of a 10-dimensional pure spinor twistor transform

Garcia, Cesar January 2021 (has links)
In this review, several tools used in the study of super-Yang-Mills scattering amplitudes are discussed, namely spinor-helicity and (super)twistor variables. These variables are then implemented in string theories in 4D, and a suitable generalization to 10D using pure spinors is discussed. Dimensional reduction of this model to 4D is then performed, and some comparisons to other 4D models are drawn.
33

Nonlinear spinor fields : toward a field theory of the electron

Mathieu, Pierre. January 1983 (has links)
No description available.
34

(Konformní) Killingovy spinor hodnotové formy na Riemannovských varietách / (Conformal) Killing spinor valued forms on Riemannian manifolds

Zima, Petr January 2014 (has links)
The goal of the present thesis is to introduce on a Riemannian Spin- manifold a system of partial differential equations for spinor-valued differ- ential forms called Killing equations. We study basic properties of several types of Killing fields and relationships among them. We provide a simple construction of Killing spinor-valued forms from Killing spinors and Killing forms. We also review the construction of metric cone and discuss the re- lationship between Killing spinor-valued forms on the base manifold and parallel spinor-valued forms on the metric cone.
35

Spin-nematic squeezing in a spin-1 Bose-Einstein condensate

Hamley, Christopher David 17 January 2012 (has links)
The primary study of this thesis is spin-nematic squeezing in a spin-1 condensate. The measurement of spin-nematic squeezing builds on the success of previous experiments of spin-mixing together with advances in low noise atom counting. The major contributions of this thesis are linking theoretical models to experimental results and the development of the intuition and tools to address the squeezed subspaces. Understanding how spin-nematic squeezing is generated and how to measure it has required a review of several theoretical models of spin-mixing as well as extending these existing models. This extension reveals that the squeezing is between quadratures of a spin moment and a nematic (quadrapole) moment in abstract subspaces of the SU(3) symmetry group of the spin-1 system. The identification of the subspaces within the SU(3) symmetry allowed the development of techniques using RF and microwave oscillating magnetic fields to manipulate the phase space in order to measure the spin-nematic squeezing. Spin-mixing from a classically meta-stable state, the phase space manipulation, and low noise atom counting form the core of the experiment to measure spin-nematic squeezing. Spin-nematic squeezing is also compared to its quantum optics analogue, two-mode squeezing generated by four-wave mixing. The other experimental study in this thesis is performing spin-dependent photo-association spectroscopy. Spin-mixing is known to depend on the difference of the strengths of the scattering channels of the atoms. Optical Feshbach resonances have been shown to be able to alter these scattering lengths but with prohibitive losses of atoms near the resonance. The possibility of using multiple nearby resonances from different scattering channels has been proposed to overcome this limitation. However there was no spectroscopy in the literature which analyzes for the different scattering channels of atoms for the same initial states. Through analysis of the initial atomic states, this thesis studies how the spin state of the atoms affects what photo-association resonances are available to the colliding atoms based on their scattering channel and how this affects the optical Feshbach resonances. From this analysis a prediction is made for the extent of alteration of spin-mixing achievable as well as the impact on the atom loss rate.
36

Introdução elementar às álgebras Clifford 'CL IND.2' 'CL IND. 3' / An elementary introduction to Clifford algebras 'CL IND.2' 'CL IND. 3'

Resende, Adriana Souza 15 August 2018 (has links)
Orientador: Waldyr Alves Rodrigues Junior / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matemática, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-15T23:09:32Z (GMT). No. of bitstreams: 1 Resende_AdrianaSouza_M.pdf: 17553204 bytes, checksum: a66cefe30e9957cc4351e03d3aec35b2 (MD5) Previous issue date: 2010 / Resumo: O presente trabalho tem a intenção de apresentar por intermédio de uma linguagem unificada alguns conceitos de cálculo vetorial, álgebra linear (matrizes e transformações lineares) e também algumas idéias elementares sobre os grupos de rotações em duas e três dimensões e seus grupos de recobrimento, que geralmente são tratados como "fragmentos" em várias modalidades de cursos no ensino superior. Acreditamos portanto que nosso texto possas ser útil para alunos dos cursos de graduação dos cursos de Engenharia, Física, Matemática e interessados em Matemática em geral. A linguagem unificada à que nos referimos acima é obtida com a introdução do conceitos das álgebras geométricas (ou de Clifford) onde, como veremos, é possível fornecer uma formulação algébrica elegante aos conceitos de vetores, planos e volumes orientados e definir para tais objetos o produto escalar, os produtos contraídos à esquerda e à direita, o produto exterior (associado, como veremos, em casos particulares ao produto vetorial) e finalmente o produto geométrico (Clifford), o que permite o uso desses conceitos para a solução de inúmeros problemas de geometria analítica no R ² e no R ³. Procuramos ilustrar todos estes conceitos com vários exemplos e exercícios com graus variáveis de dificuldades. Nossa apresentação é bem próxima àquela do livro de Lounesto, e de fato muitas seções são traduções (eventualmente seguidas de comentários) de seções daquele livro. Contudo, em muitos lugares, acreditamos que nossa apresentação esclarece e completa as correspondentes do livro de Lounesto / Abstract: This paper aims to present using an unified language a few concepts of vector calculus, linear algebra (matrices and linear transformations) and also some basic ideas about the groups of rotations in two and three dimensions and their covering group, which generally are treated as "fragments" in various types of courses in higher education. We believe therefore that our text should be useful to students of undergraduate courses like Engineering, Physics, Mathematics and people interested in Mathematics in general. The unified language that we refer to above is obtained by introducing the concept of geometric (or Clifford) algebra where, as we shall see, it is possible to give an elegant algebraic formulation to the concepts of vectors, oriented planes and oriented volumes, and to define to those objects the scalar product, the right and left contracted products, the exterior product (associated, as we shall see, in particular cases to the vector product) and finally the geometric (Clifford) product, and moreover, to use those concepts to solve may problems of analytic geometry in R ² and R ³. We illustrated all those concepts with several examples and exercises with variable degrees of difficulties. Our presentation is nearly the one in Lounesto's book, and in fact some sections are no more than translations (eventually with commentaries) from sections of that book. However, in many places, we believe that our presentation clarify nd completement the corresponding ones in Lounesto's book / Mestrado / Ágebra / Mestre em Matemática
37

Relação entre os formalismos de Green-Schwarz e espinores puros para a supercorda /

Marchioro, Dáfni Fernanda Zenedin. January 2005 (has links)
Orientador: Nathan J. Berkovits / Banca: Victor de Oliveira Rivelles / Banca: Chris Hull / Banca: Abraham Hirsz Zimerman / Banca: José Abdalla Helaÿel-Neto / Resumo: Nesta tese, mostramos a equivalência dos formalismos de Green-Schwarz e de espinores puros para a supercorda. Partindo da ação de Green-Schwarz no semi-gauge de cone de luz e adicionando graus de liberdade fermiônicos, relacionamos os operadores BRST do formalismo de espinores puros e de Green-Schwarz no semi-gauge de cone de luz através de transformações de similaridade, indicando a equivalência das respectivas cohomologias. Esta prova de equivalência é uma generalização do procedimento usado para relacionar a superpartícula de Brink-Schwarz e a superpartícula do formalismo de espinores puros. / Abstracts: In this thesis, we have shown the equivalence of the Green-Schwarz and pure spinor formalisms for the superstring. Starting from the Green-Schwarz action in the semi-light-cone gauge additional fermionic degrees of freedom, we have related the BRST operator of pure spinor formalism to the semi-light-cone Green-Schwarz operator through similarity transformations, indicating the equivalence of the cohomologies. This equivalence proof is a generalization of the procedure used to related the Brink-Schwarz and pure spinor's superparticle. / Doutor
38

Campos espinoriais ELKO /

Rogério, Rodolfo José Bueno. January 2014 (has links)
Orientador: Júlio Marny Hoff da Silva / Banca: Álvaro de Souza Dutra / Banca: José Abdalla Helayël Neto / Resumo : O século passado é considerado como a era das Teorias Quânticas de Campos. Desta forma, neste trabalho, forneceremos todos os detalhes de uma descoberta teórica inesperada de uma partícula de matéria de spin 1/2 com dimensão de massa 1. Esses espinores recebem o nome de ELKO, o qual vem do acrônimo alemão Eigenspinores des Ladungskonjugationsoperators, e são fundamentados em um conjunto completo de autoespinores de helicidade dual do operador conjugação de carga. O ELKO pertence a um subgrupo do grupo completo de Lorentz. Portanto, a lei de transformação entre suas componentes não é dada pela simetria de paridade, e desta maneira não satisfaz a equação de Dirac. Intrinsicamente nas somas de spin para o ELKO aparece um termo que quebra a simetria de Lorentz, levando então à apreciação da Very Special Relativity, que nada mais é do que um subgrupo do grupo de Lorentz, cuja álgebra deixa as somas de spin invariantes ou covariantes. Pela razão do propagador do ELKO ser o mesmo de Klein-Gordon a menos de um fator, a lagrangiana associada é a do campo escalar, por esta razão o ELKO é dotado de dimensão de massa 1 / Abstract: The last century is considered as the era of Quantum Field Theories. Thus, in this work, we provide all the details of an unexpected theoretical discovery of a matter particle spin 1/2 endowed with mass dimension 1. These spinors are the so called ELKO, which comes from the German acronym Eigenspinores des Ladungskonjugationsoperators, based on a complete set of a dual helicity eigenspinors of the charge conjugation operator. ELKO belongs to a subgroup of the full Lorentz group. Therefore, the law of transformation between its components is not given by the parity symmetry, and thus it does not satisfies the Dirac equation. It appears, intrinsically in the spin sums a Lorentz symmetry breaking term, then it will be better analysed within the Very Special Relativity, which is a subgroup of the Lorentz group, whose algebra leaves the spin sums invariant or covariant under transformations. Since the ELKO propagator is the same of Klein-Gordon propagator apart from a term, than the associated lagrangian is the scalar field one, for this reason ELKO is endowed with mass dimension 1 / Mestre
39

Kibble-Zurek mechanism in a spin-1 Bose-Einstein condensate

Anquez, Martin 07 January 2016 (has links)
The Kibble-Zurek mechanism (KZM) primarily characterizes scaling in the formation of topological defects when a system crosses a continuous phase transition. The KZM was first used to study the evolution of the early universe, describing the topology of cosmic domains and strings as the symmetry-breaking phase transitions acted on the vacuum fields during the initial cooling. A ferromagnetic spin-1 $^{87}$Rb Bose-Einstein condensate (BEC) exhibits a second-order gapless quantum phase transition due to a competition between the magnetic and collisional spin interaction energies. Unlike extended systems where the KZM is illustrated by topological defects, we focus our study on the temporal evolution of the spin populations and observe how the scaling of the spin dynamics depend on how fast the system is driven through the critical point. In our case, the excitations are manifest in the temporal evolution of the spin populations illustrating a Kibble-Zurek type scaling, where the dynamics of slow quenches through the critical point are predicted to exhibit universal scaling as a function of quench speed. The KZM has been studied theoretically and experimentally in a large variety of systems. There has also been a tremendous interest in the KZM in the cold atoms community in recent years. It has been observed not only in ion chains and in atomic gases in optical lattices, but also in Bose gases through the formation of vortices or solitons. The KZM in the context of crossing the quantum phase transition in a ferromagnetic BEC has been theoretically studied, but this thesis is the first experimental investigation of this phenomenon.
40

Tree-Level N-Point Amplitudes in String Theory

Paton, John January 2016 (has links)
This thesis reviews the method of Mafra, Schlotterer, and Stieberger (2011) for computing the full colour ordered N-point open superstring amplitude using the Pure Spinor formalism. We introduce relevant elements of super Yang-Mills theory and examine the basics of the Pure Spinor formalism, with a focus on tools for amplitude computation. We then define a series of objects with increasingly useful BRST transformation properties, which greatly simplify the calculations, and show how these properties can be determined using a diagrammatic method. Finally, we use the explicit four- and five-point amplitude computations as stepping stones to compute the general N-point amplitude, which factors into a set of kinematic integrals multiplying SYM subamplitudes.

Page generated in 0.0385 seconds