• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudos da redução do atrito hidrodinamico de soluções de polieletrolitos atraves de imagens de impacto de gotas

Guersoni, Vanessa Cristina Bizotto, 1979- 17 February 2004 (has links)
Orientadores: Edvaldo Sabadini, Marcelo Ganzarolli de Oliveira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-04T16:22:53Z (GMT). No. of bitstreams: 1 Guersoni_VanessaCristinaBizotto_M.pdf: 9347643 bytes, checksum: 24691aae57bff9b610fd4cc69b001d75 (MD5) Previous issue date: 2004 / Mestrado / Físico-Química / Mestre em Química
2

Prediction of the Effects of Surface Wettability on Droplet-Dry Substrate Splashing

Owen, Matthew K. 07 November 2017 (has links)
No description available.
3

Droplet Impact on Dry, Superhydrophobic Surfaces with Micro-Scale Roughness Elements

Boufous, Nadine 09 December 2016 (has links)
Most aircraft accidents are caused by technical problems or weather-related issues. One cause of weather-related incidents is inlight icing, which can induce negative performance characteristics and endanger the operation of an airplane. Various researchers investigating the problem of inlight icing have proposed ice-phobic coatings as one viable solution. For this purpose, it is critical to study the behavior of a droplet impact on different types of surfaces. As an alternative to physical testing, three-dimensional numerical simulation using computational fluid dynamics offers a promising strategy for evaluating the effects of surface characteristics. Using the volume of fluid method, three simulations of high-speed droplet impact on superhydrophobic surfaces with and without micro-scale roughness elements, were generated. The simulations showed that, for the roughness configurations considered, the superhydrophobic surfaces with micro-scale roughness elements were significantly less effective at repelling the droplet than the smooth superhydrophobic surfaces.
4

Estudo do efeito da redução de atrito hidrodinamico em soluções polimericas nas estruturas produzidas pelo impacto de gotas / Study of hydrodynamic drag reduction polymericsolutions based on the drop impact images

Alkschbirs, Melissa Inger 12 July 2004 (has links)
Orientadores: Edvaldo Sabadini, Marcelo G. de Oliveira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-04T14:22:34Z (GMT). No. of bitstreams: 1 Alkschbirs_MelissaInger_D.pdf: 20703558 bytes, checksum: 093e76dc07818947b87478f9a799ad47 (MD5) Previous issue date: 2004 / Resumo: O efeito da redução de atrito hidrodinâmico em soluções poliméricas nas estruturas produzidas pelo impacto de gotas foi determinado por meio da análise de imagens obtidas utilizando uma câmera CCD e um programa de tratamento de imagens. O impacto de uma gota contra uma superficie líquida causa o fenômeno conhecido como splash, onde duas principais estruturas são formadas: a coroa e o jato Rayleigh. A altura máxima atingida pelo jato Rayleigh foi utilizada como parâmetro para determinar a redução de atrito hidrodinâmico, proporcionada pela presença de pequenas quantidades (ppm) de polímeros de elevada massa molar presentes em solução. A capacidade redutora de atrito hidrodinâmico do poli( óxido de etileno ), PEO, o mais eficiente agente redutor de atrito, foi estudada em função da qualidade do solvente, da temperatura, da concentração, da massa molar e da flexibilidade intrínsica da cadeia polimérica. As modificações decorrentes de alguns destes fatores sobre o raio de giração do polímero e, conseqüentemente sobre o tempo de relaxação e a viscosidade elongacional, são responsáveis pelas modificações morfológicas observadas no jato Rayleigh. Estudos temporais da evolução do splash também foram desenvolvidos, onde se procurou correlacionar a taxa de deformação do líquido com o tempo de relaxação da cadeia polimérica. O presente trabalho mostra, de forma inédita, que é possível utilizar o splash nos estudos sobre a redução de atrito hidrodinâmico / Abstract: The presence of very small amounts (ppm) of high-molecular weight polymers in a solution produces high levels of drag reduction in a turbulent flow. This phenomenon, termed as the Toms Effect, was studied using images of the impact of a small drop against shallows liquid surfaces, both liquids containing a drag reducer agent. After the impact a crown and a cavity are created and the collapse of these structures impels a liquid column, named as Rayleigh jet. This phenomenon is termed splash. The amplitude reached by the Rayleigh jet was used to estimate the energy of the drop stored in the liquid; therefore, the maximum height of the jet allow us to determine the percentage of drag reduction. The results were discussed in terms of different parameters such as polymer concentration, molecular weight in the poly(ethylene oxide), PEO, the most efficient drag reducer agent in aqueous system. The splash in aqueous polymeric solution is dominated by the elongational viscosity and therefore, the polymer relaxation time has an important role in the process. We consider that the main contribution of this work to the drag reduction field is the new approach proposed to investigate this old hydrodynamic phenomenon / Doutorado / Físico-Química / Doutor em Quimica
5

Scaling Laws for Water Entry into Surface Seal Cavities

Chand, Chakra Bahadur 07 1900 (has links)
Splash and surface craters (cavities) are ubiquitous phenomena when a mass impacts an air-liquid interface, penetrating the liquid phase from the air side—a process known as water entry. Depending on the impact velocity, the formed splash and cavity might result in four types of water entry: quasi-static, shallow, deep, and surface seal. Although numerous studies have been conducted to investigate different types of water entry, surface seal water entry is not well understood yet due to the complex interaction of the splash curtain with the cavity. This research employs high-fidelity computational fluid dynamics simulations to study the characteristics of surface seal water entry and develop formulations of the time scaling and pressure scaling laws for low and high impact velocities. CFD studies were conducted to analyze surface seal dynamics across low and high-speed regimes (U = 6 to 50 m/s). Our findings suggest that the pressure inside the cavity can be scaled based on the impact velocity, and the dimensionless surface seal time can be scaled by the pressure within the cavity. We propose new scaling laws for pressure and time regarding surface seal cavities, and we also explore the pressure, velocity, and vorticity distributions inside and outside the air cavity, alongside the characteristics of splash dynamics.
6

Determining the viscous splash losses in the housing of a hydraulic motor through CFD-simulations : A master thesis in collaboration with Bosch-Rexroth in Mellansel AB

Larsson, Tommy January 2017 (has links)
One possible way of solving future energy shortages is by the optimization of our current energy consumption. These optimizations must span all possible fields of consumption. In the mechanical field radial piston hydraulic motors may show some margin of improvement. The radial piston hydraulic motor is driven by a pressure difference in hydraulic oil. These motors are commonly found in heavy industrial equipments such as drills and conveyor belts. The advantage with these motors in comparison with electric motors is the high torque and ability to absorb shock loads that may cause damage to electrical motors. The effectiveness of these motors are determined both by the motor and by the drive system as a whole consisting of hydraulic pump driven by a electric motor, hydraulic hoses, motor and possible external coolers. If the effectiveness of the motor is low the whole drive system will be affected thus amplifying the total losses. The losses in the motor can be both mechanical and derived to the viscosity of the oil. One region in the motor where there are viscous losses are in the housing. The housing is filled with oil, that both aids in the cooling and acts as a lubricant for the motor. Pistons and rollers are some of the components found in the housing. These components rotates around the centre line axis while having a pulsating radial motion following a cam ring. This rotating and pulsating motion will push oil in and out of a volume between two consecutive pistons and rollers. This will create viscous losses and regions with a enhanced risk of cavitation. This study investigates if the flow of oil in the housing can be simulated accurately. The study also examine what are the main problems regarding the flow of oil in the housing and the factors affecting the size of the viscous losses. The study also examines the correlation between viscosity and viscous losses. Finally two different optimizations with the intention of decreasing the viscous losses are compared. The study found that the majority of the viscous losses in the housing can be derived to the flow of hydraulic oil in and out of the volume between two consecutive pistons and rollers. The oil will pass a sharp edge around the cylinder block and a narrow passage under the spacing between the cylinder rows in a two cam ring configured motor. This will create regions with a enhanced velocity and risk of cavitation. The stroke of the motor will greatly affect the effectiveness of the motor especially at a high rotational speed. The viscous losses will be transformed into internal energy, heat, thus increasing the temperature of the oil. A increased temperature will decrease the viscosity and the viscous losses. The viscous losses will vary with 17 % if the viscosity is varied between 20 and 100 cSt. The developed model is not sufficient to determine the viscous losses accurately since the geometry had to be considerably simplified, but can act as a way of comparing different optimizations of the motor. The viscous losses can be decreased with 25 % in the CCe motor at 150 rpm by milling material of the cylinder block between the piston holes. This is an expensive optimization and needs to be justified from a cost-benefit perspective.
7

Sélection d'oligonucléotides pour la fabrication de biopuces d'ADN

Dallaire, Paul January 2001 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
8

Design and implementation of a reconfigurable FPGA-based video frame grabber board

Nevits, Jeffrey A. 02 October 2008 (has links)
This thesis describes the design and implementation of the JB1 reconfigurable video frame grabber board and its use in the Virginia Tech Splash system. The system utilizes the frame grabber board to provide the Splash-2 platform with real time digital images suitable for image processing. The board converts analog black and white video images (RS-170 format) into digital grey scale images of sizes up to 480 rows x 512 columns x 8 bits per pixel. The resulting images are then transferred to the Splash-2 platform in real time for subsequent processing. The board utilizes two Xilinx field programmable gate arrays (FPGAs) for implementation of different configurations. A software user interface has also been developed to control the operation of the board. / Master of Science
9

Evaluation of drop break-up after impingement on horizontal slat grids and the effect of drop size of cooling tower rain zone performance

Terblanche, Riaan 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Natural draught wet-cooling tower rain zone performance can be significantly enhanced by reducing the mean drop size in the rain zone with the installation of specially designed grids below the cooling tower fill. Drops enter the rain zone in the form of a polydisperse drop distribution, dripping from below the cooling tower fill, comprising relatively large drops. In order to design and optimize a grid for breaking up these drops, the mechanisms of drop break-up after impingement on the grid surface, referred to as splashing, straddling and dripping, need to be clearly understood. Two of these mechanisms, splashing and straddling, are therefore investigated experimentally using high speed video cameras to measure initial drop sizes, mass fractions and drop size distributions after impingement on different horizontal slats covered with a thin layer of water. The following parameters are varied independently for these experiments: drop fall distance, initial drop size, slat width and the water film thickness on the slats. Dripping from below the grid, is investigated theoretically. The effect of drop interaction on the drop size distribution in the rain zone is also investigated experimentally by measuring the drop distributions at the top and bottom of rain zones with a height of approximately 7.05 m to 7.65 m for different inlet distributions. The experimental drop break-up data, numerically obtained splash drop trajectory data and drop interaction data found in literature are used to develop a theoretical model of a purely counter flow cooling tower rain zone with and without installed grids. The model is compared to experimental data and theoretical data from literature and the predicted thermal and dynamic behaviour of the rain zone are generally found to be in good agreement with these results. Ultimately, this model is used for the optimization of the grid layout in terms of variables such as distance between the grid and the fill, slat width, slat spacing and slat height. It is found that the best drop break-up is achieved for grids comprising narrower slats with lower grid porosities as opposed to grids comprising wider slats. For the determined optimal grid layout it is found that a significant improvement in cooling tower performance can be achieved. / AFRIKAANSE OPSOMMING: Nat-koeltoringreënsonevermoë kan aansienlik verhoog word deur die druppelgrootte in hierdie gebied te verklein deur roosters, wat spesifiek vir hierdie doel ontwerp is, onder die pakkingsmateriaal te installeer. Die inlaatdruppelverdeling aan die bokant van die reënsone bestaan uit ‘n verdeling van relatief groot druppels wat drip van die onderkant van die pakkingsmateriaal. Ten einde ‘n rooster te ontwerp en te optimeer wat hierdie druppels kan opbreek moet die meganismes van druppelopbreking, bekend as spatting, vurking en drip goed verstaan word. Spatting en vurking is om hierdie rede eksperimenteel ondersoek, met behulp van hoëspoed videokameras. Die volgende veranderlikes is onafhanklik verander tydens hierdie eksperimente: valafstand van die druppel, aanvanklike druppelgrootte, latwydte en die dikte van die lagie water bo-op die lat. Die dripmeganisme aan die onderkant van die rooster is slegs teoreties ondersoek. Die effek wat druppelinteraksie in die reënsone het op die druppelgrootte is ondersoek deur die druppelgroottes aan die bo- en onderkant van ‘n 7.05 m tot 7.65 m reënsone te meet vir verskillende druppelinlaatverdelings. Die eksperimentele druppeldata, sowel as numeries berekende data wat die snelheid en trajek van spatdruppels beskryf, tesame met data vir druppelinteraksies wat uit die literatuur verkry is word gebruik om ‘n teoretiese model te ontwikkel vir ‘n suiwer teenvloei koeltoringreënsone met en sonder roosters. Hierdie model word vergelyk met eksperimentele data en data wat uit die literatuur verkry is en daar is gevind dat daar oor die algemeen ‘n goeie ooreenstemming is tussen die voorspelde en gemete termiese en dinamiese gedrag van die reënsone. Uiteindelik word die model gebruik vir die optimering van die rooster in terme van die volgende veranderlikes: afstand tussen rooster en pakkingsmateriaal, latwydte, latspasiëring en lathoogte. Daar word gevind dat beter druppelopbreking verkry word deur gebruik te maak van smaller latte en ‘n laer roosterporeusiteit. Daar is gevind dat die bepaalde optimale roosteruitleg in die reënsone van ‘n koeltoring ‘n wesenlike verbetering in koeltoringvermoë tot gevolg kan hê.
10

New mathematical models for splash dynamics

Moore, Matthew Richard January 2014 (has links)
In this thesis, we derive, extend and generalise various aspects of impact theory and splash dynamics. Our methods throughout will involve isolating small parameters in our models, which we can utilise using the language of matched asymptotics. In Chapter 1 we briefly motivate the field of impact theory and outline the structure of the thesis. In Chapter 2, we give a detailed review of classical small-deadrise water entry, Wagner theory, in both two and three dimensions, highlighting the key results that we will use in our extensions of the theory. We study oblique water entry in Chapter 3, in which we use a novel transformation to relate an oblique impact with its normal-impact counterpart. This allows us to derive a wide range of solutions to both two- and three-dimensional oblique impacts, as well as discuss the limitations and breakdown of Wagner theory. We return to vertical water-entry in Chapter 4, but introduce the air layer trapped between the impacting body and the liquid it is entering. We extend the classical theory to include this air layer and in the limit in which the density ratio between the air and liquid is sufficiently small, we derive the first-order correction to the Wagner solution due to the presence of the surrounding air. The model is presented in both two dimensions and axisymmetric geometries. In Chapter 5 we move away from Wagner theory and systematically derive a series of splash jet models in order to find possible mechanisms for phenomena seen in droplet impact and droplet spreading experiments. Our canonical model is a thin jet of liquid shot over a substrate with a thin air layer trapped between the jet and the substrate. We consider a variety of parameter regimes and investigate the stability of the jet in each regime. We then use this model as part of a growing-jet problem, in which we attempt to include effects due to the jet tip. In the final chapter we summarise the main results of the thesis and outline directions for future work.

Page generated in 0.0376 seconds