Spelling suggestions: "subject:"SpoIIIE/htst"" "subject:"SpoIIIE/ttss""
1 |
From DNA sequence recognition to directional chromosome segregation: Information transfer in the translocase protein SpoIIIEBesprozvannaya, Marina January 2014 (has links)
Faithful chromosome segregation is essential for all living organisms. Bacterial chromosome segregation utilizes highly conserved directional SpoIIIE/FtsK translocases to move large DNA molecules between spatially separated compartments. These translocases employ an accessory DNA-interacting domain (gamma) that dictates the direction of DNA transport by recognizing specific DNA sequences. To date it remains unclear how these translocases use DNA sequence information as a trigger to expend chemical energy (ATP turnover) and thereby power mechanical work (DNA movement). In this thesis, I undertook a mechanistic study of directional DNA movement by SpoIIIE from the Gram-positive model bacterium Bacillus subtilis. Specifically, I was interested in understanding the information transfer within the protein from sequence recognition, to ATP turnover, and ultimately to chromosome translocation. How do DNA sequences trigger directional chromosome movement?
|
Page generated in 0.0217 seconds