Spelling suggestions: "subject:"3ports highlight summarization"" "subject:"3ports highlight ummarization""
1 |
New data analytics and visualization methods in personal data mining, cancer data analysis and sports data visualizationZhang, Lei 12 July 2017 (has links)
In this dissertation, we discuss a reading profiling system, a biological data visualization system and a sports visualization system. Self-tracking is getting increasingly popular in the field of personal informatics. Reading profiling can be used as a personal data collection method. We present UUAT, an unintrusive user attention tracking system. In UUAT, we used user interaction data to develop technologies that help to pinpoint a users reading region (RR). Based on computed RR and user interaction data, UUAT can identify a readers reading struggle or interest. A biomarker is a measurable substance that may be used as an indicator of a particular disease. We developed CancerVis for visual and interactive analysis of cancer data and demonstrate how to apply this platform in cancer biomarker research. CancerVis provides interactive multiple views from different perspectives of a dataset. The views are synchronized so that users can easily link them to a same data entry. Furthermore, CancerVis supports data mining practice in cancer biomarker, such as visualization of optimal cutpoints and cutthrough exploration. Tennis match summarization helps after-live sports consumers assimilate an interested match. We developed TennisVis, a comprehensive match summarization and visualization platform. TennisVis offers chart- graph for a client to quickly get match facts. Meanwhile, TennisVis offers various queries of tennis points to satisfy diversified client preferences (such as volley shot, many-shot rally) of tennis fans. Furthermore, TennisVis offers video clips for every single tennis point and a recommendation rating is computed for each tennis play. A case study shows that TennisVis identifies more than 75% tennis points in full time match.
|
Page generated in 0.0783 seconds