• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Antenna reduction techniques in MIMO systems and ad-hoc networks

Spyridakis, Georgios George January 2013 (has links)
In this thesis, an antenna reduction technique in Multiple Input Multiple Output (MIMO) systems, which is called Code Shift Keying (CSK) Modulation, is introduced. With the use of Walsh Hadamard orthogonal spreading codes, we overcome the biggest drawback of conventional Spatial Modulation (SM) which is the antenna index estimation errors due to channel correlation. Also SM fails to perform in non normalised channel conditions. The combination of orthogonal spreading codes and antenna devices, as a means to convey information at the receiver, results in a remarkable performance improvement at the receiver.Moreover, an improved scheme that uses half the amount of spreading codes so as to represent the total number of information bits has been introduced leading to an important reduction in bandwidth usage. By maintaining the net spreading levels of the system we attain remarkable performance improvements.A technique called Polarisation Assisted Space Shift Keying Modulation (PASSK) has also been proposed which manages to exploit the polarisation domain and it is able to outperform the conventional SM technique as well as the Maximal Ratio Receiver Combine (MRRC) and Vertical-Bell Laboratories Layered Space-Time (V-BLAST) schemes. A new precoding scheme that manages to either eliminate or exploit the cross polarisation effects has also been proposed as a complementary study of the PASSK scheme.As modern and future communications show a rising demand for higher data transmission rates, network coding is increasingly incorporated in wireless communication standards. In harmonisation with this trend, this thesis discusses the main state-of-art network coding schemes. The contribution here includes a number of innovative schemes that are able to further increase throughput. Finally, the employment of network coding is discussed in conjunction with CSK Modulation resulting to further improvement in terms of throughput as well as Bit Error Rate (BER) performance at the cost of increased bandwidth usage.
2

Modely pro zkoumání vlivu rušení na kvalitativní parametry signálu UMTS / Models for investigation of interference influence to qualitative parameters of UMTS signal

Růžička, Zdeněk January 2008 (has links)
This dissertation thesis is focused to interference investigation in UMTS network and interference influence to error ratio and signal to noise or interference ratio. There are presented models based on UMTS physical layer specifications that simulate signal transmission and processing. The aim of simulations is to analyze different types of interference and to appoint the possibilities of this interference decrease.
3

Linear MMSE Receivers for Interference Suppression & Multipath Diversity Combining in Long-Code DS-CDMA Systems

Mirbagheri, Arash January 2003 (has links)
This thesis studies the design and implementation of a linear minimum mean-square error (LMMSE) receiver in asynchronous bandlimited direct-sequence code-division multiple-access (DS-CDMA) systems that employ long-code pseudo-noise (PN) sequences and operate in multipath environments. The receiver is shown to be capable of multiple-access interference (MAI) suppression and multipath diversity combining without the knowledge of other users' signature sequences. It outperforms any other linear receiver by maximizing output signal-to-noise ratio (SNR) with the aid of a new chip filter which exploits the cyclostationarity of the received signal and combines all paths of the desired user that fall within its supported time span. This work is motivated by the shortcomings of existing LMMSE receivers which are either incompatible with long-code CDMA or constrained by limitations in the system model. The design methodology is based on the concept of linear/conjugate linear (LCL) filtering and satisfying the orthogonality conditions to achieve the LMMSE filter response. Moreover, the proposed LMMSE receiver addresses two drawbacks of the coherent Rake receiver, the industry's current solution for multipath reception. First, unlike the Rake receiver which uses the chip-matched filter (CMF) and treats interference as additive white Gaussian noise (AWGN), the LMMSE receiver suppresses interference by replacing the CMF with a new chip pulse filter. Second, in contrast to the Rake receiver which only processes a subset of strongest paths of the desired user, the LMMSE receiver harnesses the energy of all paths of the desired user that fall within its time support, at no additional complexity. The performance of the proposed LMMSE receiver is analyzed and compared with that of the coherent Rake receiver with probability of bit error, <i>Pe</i>, as the figure of merit. The analysis is based on the accurate improved Gaussian approximation (IGA) technique. Closed form conditional <i>Pe</i> expressions for both the LMMSE and Rake receivers are derived. Furthermore, it is shown that if quadriphase random spreading, moderate to large spreading factors, and pulses with small excess bandwidth are used, the widely-used standard Gaussian Approximation (SGA) technique becomes accurate even for low regions of <i>Pe</i>. Under the examined scenarios tailored towards current narrowband system settings, the LMMSE receiver achieves 60% gain in capacity (1. 8 dB in output SNR) over the selective Rake receiver. A third of the gain is due to interference suppression capability of the receiver while the rest is credited to its ability to collect the energy of the desired user diversified to many paths. Future wideband systems will yield an ever larger gain. Adaptive implementations of the LMMSE receiver are proposed to rid the receiver from dependence on the knowledge of multipath parameters. The adaptive receiver is based on a fractionally-spaced equalizer (FSE) whose taps are updated by an adaptive algorithm. Training-based, pilot-channel-aided (PCA), and blind algorithms are developed to make the receiver applicable to both forward and reverse links, with or without the presence of pilot signals. The blind algorithms are modified versions of the constant modulus algorithm (CMA) which has not been previously studied for long-code CDMA systems. Extensive simulation results are presented to illustrate the convergence behavior of the proposed algorithms and quantify their performance loss under various levels of MAI. Computational complexities of the algorithms are also discussed. These three criteria (performance loss, convergence rate, and computational complexity) determine the proper choice of an adaptive algorithm with respect to the requirements of the specific application in mind.
4

Linear MMSE Receivers for Interference Suppression & Multipath Diversity Combining in Long-Code DS-CDMA Systems

Mirbagheri, Arash January 2003 (has links)
This thesis studies the design and implementation of a linear minimum mean-square error (LMMSE) receiver in asynchronous bandlimited direct-sequence code-division multiple-access (DS-CDMA) systems that employ long-code pseudo-noise (PN) sequences and operate in multipath environments. The receiver is shown to be capable of multiple-access interference (MAI) suppression and multipath diversity combining without the knowledge of other users' signature sequences. It outperforms any other linear receiver by maximizing output signal-to-noise ratio (SNR) with the aid of a new chip filter which exploits the cyclostationarity of the received signal and combines all paths of the desired user that fall within its supported time span. This work is motivated by the shortcomings of existing LMMSE receivers which are either incompatible with long-code CDMA or constrained by limitations in the system model. The design methodology is based on the concept of linear/conjugate linear (LCL) filtering and satisfying the orthogonality conditions to achieve the LMMSE filter response. Moreover, the proposed LMMSE receiver addresses two drawbacks of the coherent Rake receiver, the industry's current solution for multipath reception. First, unlike the Rake receiver which uses the chip-matched filter (CMF) and treats interference as additive white Gaussian noise (AWGN), the LMMSE receiver suppresses interference by replacing the CMF with a new chip pulse filter. Second, in contrast to the Rake receiver which only processes a subset of strongest paths of the desired user, the LMMSE receiver harnesses the energy of all paths of the desired user that fall within its time support, at no additional complexity. The performance of the proposed LMMSE receiver is analyzed and compared with that of the coherent Rake receiver with probability of bit error, <i>Pe</i>, as the figure of merit. The analysis is based on the accurate improved Gaussian approximation (IGA) technique. Closed form conditional <i>Pe</i> expressions for both the LMMSE and Rake receivers are derived. Furthermore, it is shown that if quadriphase random spreading, moderate to large spreading factors, and pulses with small excess bandwidth are used, the widely-used standard Gaussian Approximation (SGA) technique becomes accurate even for low regions of <i>Pe</i>. Under the examined scenarios tailored towards current narrowband system settings, the LMMSE receiver achieves 60% gain in capacity (1. 8 dB in output SNR) over the selective Rake receiver. A third of the gain is due to interference suppression capability of the receiver while the rest is credited to its ability to collect the energy of the desired user diversified to many paths. Future wideband systems will yield an ever larger gain. Adaptive implementations of the LMMSE receiver are proposed to rid the receiver from dependence on the knowledge of multipath parameters. The adaptive receiver is based on a fractionally-spaced equalizer (FSE) whose taps are updated by an adaptive algorithm. Training-based, pilot-channel-aided (PCA), and blind algorithms are developed to make the receiver applicable to both forward and reverse links, with or without the presence of pilot signals. The blind algorithms are modified versions of the constant modulus algorithm (CMA) which has not been previously studied for long-code CDMA systems. Extensive simulation results are presented to illustrate the convergence behavior of the proposed algorithms and quantify their performance loss under various levels of MAI. Computational complexities of the algorithms are also discussed. These three criteria (performance loss, convergence rate, and computational complexity) determine the proper choice of an adaptive algorithm with respect to the requirements of the specific application in mind.
5

Μελέτη φυσικού επιπέδου τηλεπικοινωνιακών συστημάτων 3ης γενιάς και εξομοίωση καναλιού PRACH ανερχόμενης ζεύξης κατά την προτυποποίηση 3GPP

Παναγιωτακοπούλου, Αγγελική 15 January 2009 (has links)
Η παρούσα διπλωματική εργασία έγινε στα πλαίσια του Προγράμματος Μεταπτυχιακών Σπουδών Ηλεκτρονικής και Υπολογιστών, στο Τμήμα Φυσικής του Πανεπιστημίου Πατρών. Αντικείμενό της αποτελεί η μελέτη του φυσικού επιπέδου συστημάτων κινητής τηλεφωνίας τρίτης γενιάς και η εξομοίωση χαρακτηριστικού καναλιού του φυσικού επιπέδου σύμφωνα με την παγκόσμια προτυποποίηση 3GPP. Στο πρώτο κεφάλαιο γίνεται ιστορική ανασκόπηση των συστημάτων προηγούμενων γενεών. Αναφέρονται βασικά προβλήματα που πρέπει να αντιμετωπίσει ένα τηλεπικοινωνιακό σύστημα καθώς και η βασική δομή των κυψελοειδών συστημάτων. Γίνεται εισαγωγή στα συστήματα τρίτης γενιάς ως προς τις απαιτήσεις, τις υπηρεσίες που προσφέρουν, την προτυποποίηση και την αρχιτεκτονική τους. Στο δεύτερο κεφάλαιο μελετώνται οι τρόποι πολλαπλής πρόσβασης με ιδιαίτερη έμφαση στην προσπέλαση με διαίρεση κωδικών. Αναλύονται τα συστήματα διάχυσης φάσματος. Γίνεται εκτενής αναφορά και υλοποίηση προγραμμάτων για τις ψευδοτυχαίες ακολουθίες και τις ακολουθίες Gold. Στο τρίτο κεφάλαιο μελετάται η δομή δικτύων επικοινωνίας κατά το μοντέλο OSI. Αναφέρονται τα επίπεδα των τηλεπικοινωνιακών συστημάτων με διεξοδική μελέτη του φυσικού επιπέδου και στις διεπαφές που χρησιμοποιεί για επικοινωνία καθώς και στις υπηρεσίες που προσφέρει. Αναλύεται η δομή όλων των φυσικών καναλιών και εξομοιώνεται η διαδικασία ενθυλάκωσης του καναλιού PRACH. Στο τέταρτο κεφάλαιο αναλύονται οι κώδικες διάχυσης των φυσικών καναλιών ανερχόμενης ζεύξης καθώς και η διαδικασία διάχυσης τους. Δημιουργούνται προγράμματα που παράγουν αυτούς τους κώδικες και γίνεται εξομοίωση της διάχυσης και της αποδιάχυσης του PRACH καναλιού. Στο πέμπτο κεφάλαιο αναφέρεται η διαδικασία κωδικοποίησης πηγής και μελετάται η PSK διαμόρφωση και αποδιαμόρφωση που χρησιμοποιούν τα συστήματα τρίτης γενιάς. Υλοποιούνται προγράμματα που εξομοιώνουν τη συνολική διαδικασία σε ενθόρυβο κανάλι AWGN μελετώντας την επίδραση του θορύβου σε μεταδιδόμενο σήμα. Όλες οι εξομοιώσεις υλοποιήθηκαν με το πρόγραμμα Matlab 7.1. / This master thesis is a part of the post-graduate course of the Physics department of the University of Patras, on Electronics and Computers. Its main objective is the study of the physical layer of 3rd generation telecommunication systems and the simulation of a particular channel, in accordance to 3GPP specifications. In the first chapter we review telecommunication systems of previous generations. We also refer to major problems that need to be dealt with and also the basic structure of cellular networks. 3rd generation telecommunication systems, their requirements, offered services, standardisation and architecture are all introduced. In the second chapter we study multiple access methods, emphasising CDMA methods. Moreover, spread spectrum systems are analysed. Finally we refer to pseudorandom and Gold sequences. Programs are created which generate these sequences. In the third chapter we look into the structure of communication networks according to the OSI model. The layers of telecommunication systems are mentioned, laying emphasis on the physical layer, the interfaces used for communication as well as the offered services. We report all physical channels and we simulate the encapsulation of the PRACH channel. In the fourth chapter we analyse the spreading and scrambling codes referring to the uplink channels. Next we point out the code allocation process. Programs are created which generate these spreading and scrambling codes and we finally simulate the spreading and de-spreading process of the PRACH channel. In the fifth chapter we outline the source coding process using PCM, and we study PSK modulation and demodulation which are used by 3rd generation telecommunication systems. We create programs that simulate the whole procedure in a noisy channel, and we study the effect of AWGN. The programs were created and the simulations were run using Matlab version 7.1.

Page generated in 0.0915 seconds