Spelling suggestions: "subject:"squaring then circle"" "subject:"squaring them circle""
1 |
A quadratura do círculo e a gênese do número (pi)Vendemiatti, Aloísio Daniel 24 April 2009 (has links)
Made available in DSpace on 2016-04-27T16:58:52Z (GMT). No. of bitstreams: 1
Aloisio Daniel Vendeniatti.pdf: 1272014 bytes, checksum: 1262d89ac2880970c73eca396d22ca43 (MD5)
Previous issue date: 2009-04-24 / Secretaria da Educação do Estado de São Paulo / The goal of this essay is to show aspects of genesis of number π, inherent to the question of squaring the circle, which consists in constructing a square which has the same area as a given circle. This problem does not refer to a practical application of mathematics, but to the theoretic question that involves the distinction between a valid approach and thinking accuracy. The first attempt to squaring the circle dates back in the fifth century before Christ. After that, it was established that this construction should be carried through using a finite number of times, also the non-graduated ruler and the drawing compass itself. In the constructions with ruler and drawing compass we are referring to the first three postulates of Euclides Elements: 1) It´s possible to join two points by a straight line, 2) to expand a straight line until the necessary point, and 3) to draw a circumference around any point and with any radius. These postulates are the base of these constructions, sometimes called euclidean´s constructions. A real number α is constructible, if feasible building a segment of legth α with ruler and drawing compass, since a segment is taken as a unity. We show the idea of translating the geometrical problem of constructions made with ruler and drawing compass to the algebraic language and this allowed us to solve the problem of squaring the circle. We exposed that all constructible numbers are algebraic, over the rational numbers, establishing the impossibility of squaring the circle, with Lindemann´s demonstration, in 1882, of the number π transcendence. This problem has been fascinating people for more than twenty centuries. We tried to supply all mathematical tools needed for this demonstration. Demonstrations play a fundamental role in the development of this essay, which purpose is not only to contribute to the math teacher formation, but also to detail the resolution of the problem of squaring the circle / O objetivo deste trabalho é apresentar aspectos da gênese do número π, inerentes à questão da quadratura do círculo, a qual consiste em construir um quadrado de área igual à área de um círculo de raio r dado. Esse problema não diz respeito a uma aplicação prática da matemática, mas sim a uma questão teórica que envolve uma distinção entre uma boa aproximação e a exatidão do pensamento. O registro da primeira tentativa de se quadrar o círculo remonta a Anaxágoras, no século V a.C. Posteriormente, ficou estabelecido que essa construção deveria ser realizada utilizando-se, um número finito de vezes, a régua não graduada e o compasso. Nas construções com régua e compasso, estamos nos referindo aos três primeiros postulados dos Elementos de Euclides: 1) é possível unir dois pontos por uma reta, 2) prolongar uma linha reta até onde seja necessário e 3) traçar uma circunferência em torno de qualquer ponto e com qualquer raio. Esses postulados são a base dessas construções, muitas vezes chamadas de construções euclidianas. Um número real α é construtível, se for possível "construir com régua e compasso um segmento de comprimento igual a α, a partir de um segmento tomado como unidade". Apresentamos a idéia de traduzir o problema geométrico das construções com régua e compasso para a linguagem algébrica, e isso permitiu solucionar o problema da quadratura do círculo. Expomos que todo número construtível é algébrico sobre os racionais, estabelecendo a impossibilidade de quadrar o círculo com a demonstração de Lindemann, em 1882, da transcendência do número π. Vemos que esse problema fascinou estudiosos por mais de 20 séculos. Procuramos fornecer todas as ferramentas matemáticas necessárias para essa demonstração. As demonstrações desempenham um papel fundamental no desenvolvimento deste trabalho, que tem por finalidade não só contribuir para a formação do professor de matemática, mas também detalhar a resolução do problema da quadratura do círculo
|
2 |
Algebraické křivky v historii a ve škole / Algebraic curves in history and schoolFabián, Tomáš January 2016 (has links)
TITLE: Agebraic Curves in History and School AUTHOR: Bc. Tomáš Fabián DEPARTMENT: The Department of mathematics and teaching of mathematics SUPERVISOR: prof. RNDr. Ladislav Kvasz, Dr. ABSTRACT: The thesis includes a series of exercises for senior high school students and the first year of university students. In these exercises, students will increase their knowledge about conics, especially how to draw them. Furthermore, students can learn about two unfamiliar curves: Conchoid and Quadratrix. All these curves are afterwards used for solving other problems - some Apollonius's problems, Three impossible constructions etc. Most of the construction is done in GeoGebra software. All the tasks are designed for students to learn how to work with this software. The subject discussed is put into historical context, and therefore the exercises are provided with historical commentary. The thesis also includes didactic notes, important or interesting solutions of exercises, possible issues, mistakes and another relevant notes. KEYWORDS: conic, circle, ellipse, parabola, hyperbole, conchoid, quadratrix, trisecting an angle, squaring the circle, rectification of the circle, doubling a cube, Apollonius's problem, GeoGebra
|
3 |
Algebraické křivky v historii a ve škole / Algebraic Curves in History and SchoolFabián, Tomáš January 2015 (has links)
TITLE: Agebraic Curves in History and School AUTHOR: Bc. Tomáš Fabián DEPARTMENT: The Department of mathematics and teaching of mathematics SUPERVISOR: prof. RNDr. Ladislav Kvasz, Dr. ABSTRACT: The thesis includes a series of exercises for senior high school students and the first year of university students. In these exercises, students will increase their knowledge about conics, especially how to draw them. Furthermore, students can learn about two unfamiliar curves: Conchoid and Quadratrix. All these curves are afterwards used for solving other problems - some Apollonius's problems, Three impossible constructions etc. Most of the construction is done in GeoGebra software. All the tasks are designed for students to learn how to work with this software. The subject discussed is put into historical context, and therefore the exercises are provided with historical commentary. The thesis also includes didactic notes, important or interesting solutions of exercises, possible issues, mistakes and another relevant notes. KEYWORDS: conic, circle, ellipse, parabola, hyperbole, conchoid, quadratrix, trisecting an angle, squaring the circle, rectification of the circle, doubling a cube, Apollonius's problem, GeoGebra
|
4 |
Carl Friedrich Geiser and Ferdinand Rudio : the men behind the first International Congress of MathematiciansEminger, Stefanie Ursula January 2015 (has links)
The first International Congress of Mathematicians (ICM) was held in Zurich in 1897, setting the standards for all future ICMs. Whilst giving an overview of the congress itself, this thesis focuses on the Swiss organisers, who were predominantly university professors and secondary school teachers. As this thesis aims to offer some insight into their lives, it includes their biographies, highlighting their individual contributions to the congress. Furthermore, it explains why Zurich was chosen as the first host city and how the committee proceeded with the congress organisation. Two of the main organisers were the Swiss geometers Carl Friedrich Geiser (1843-1934) and Ferdinand Rudio (1856-1929). In addition to the congress, they also made valuable contributions to mathematical education, and in Rudio's case, the history of mathematics. Therefore, this thesis focuses primarily on these two mathematicians. As for Geiser, the relationship to his great-uncle Jakob Steiner is explained in more detail. Furthermore, his contributions to the administration of the Swiss Federal Institute of Technology are summarised. Due to the overarching theme of mathematical education and collaborations in this thesis, Geiser's schoolbook "Einleitung in die synthetische Geometrie" is considered in more detail and Geiser's methods are highlighted. A selection of Rudio's contributions to the history of mathematics is studied as well. His book "Archimedes, Huygens, Lambert, Legendre" is analysed and compared to E W Hobson's treatise "Squaring the Circle". Furthermore, Rudio's papers relating to the commentary of Simplicius on quadratures by Antiphon and Hippocrates are considered, focusing on Rudio's translation of the commentary and on "Die Möndchen des Hippokrates". The thesis concludes with an analysis of Rudio's popular lectures "Leonhard Euler" and "Über den Antheil der mathematischen Wissenschaften an der Kultur der Renaissance", which are prime examples of his approach to the history of mathematics.
|
Page generated in 0.0738 seconds