• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amplification paramétrique ultra-large bande dans l’ infrarouge en régime de forte énergie et de forte puissance moyenne / High energy and high repetition rate broadband optical parametric amplification in the infrared

Nillon, Julien 15 June 2012 (has links)
Alors que la science attoseconde connaît un développement fulgurant, le besoin de nouvelles sources laser adaptées à la génération d'impulsions attosecondes uniques est apparu. Grâce à ses propriétés d'accordabilité en fréquence et d'amplification de spectres ultra-larges à même de supporter des durées d'impulsions ultracourtes, conjuguées à la possibilité de stabiliser passivement la phase sous l'enveloppe (CEP) du champ électrique associé à l'impulsion laser, l'amplification paramétrique (OPA) s'est imposée comme un des outils incontournables pour la réalisation de telles sources.De plus, un intérêt croissant se manifeste pour la montée en cadence des sources d'harmoniques d'ordre élevé (HHG), en tirant parti des avancées des laser à fibre. Récemment fut démontrée la génération d'impulsions ultracourtes à très haute cadence, stabilisées en phase, dans la partie visible du spectre. Décaler la bande d'amplification vers l'infrarouge présenterait des avantages certains du point de vue de la génération d'harmoniques. En effet, travailler avec une source laser infrarouge permet d'étendre le spectre d'harmoniques et donc de réduire la durée des impulsions attosecondes générées. Jusqu'à présent, l'amplification paramétrique large bande dans l'infrarouge à haute cadence était rendue impossible par la difficulté à générer un signal à ces longueurs d'onde directement à partir d'un laser à fibre.Les travaux exposés ici décrivent la réalisation de nouvelles sources paramétriques, spécifiquement conçues en fonction des exigences de la génération d'impulsions attosecondes uniques, aussi bien en régime de forte énergie qu'à des cadences élevées.Nous présentons tout d'abord le développement d'un OPA avec stabilisation passive de la CEP, capable d'amplifier un spectre d'une largeur de 700 nm centré à 1,75 µm et délivrant une énergie de 450 µJ à la cadence de 10 Hz. Puis, nous détaillons une architecture originale d'amplification paramétrique à haute cadence pompé par un laser à fibre, qui nous a permis de générer des impulsions stabilisées en phase d'une durée inférieure à trois cycles optiques à la longueur d'onde centrale de 2,2 µm, avec une énergie de 5 µJ à la cadence de 100 kHz.Enfin, nous explorons la possibilité d'accroître la puissance de sortie des OPA infrarouges large bande à des niveaux de plusieurs dizaines de watts, grâce à la technique de combinaison paramétrique de plusieurs faisceaux de pompe fibrés. / While attosecond science reaches new frontiers in physics, the need for innovative primary sources suited for the generation of single attosecond (as) pulses emerges. Featuring high tunability, ultra-broadband amplification bandwidth and the ability of passively stabilizing the random Carrier-Envelope Phase (CEP) of any pump laser, Optical Parametric Amplification (OPA) has proven to be one of the most effective tools to meet the stringent requirements of High-Order Harmonics (HHG) driving sources.Moreover, there is a growing interest for higher repetition rate HHG sources, pumped by Ytterbium-doped fiber lasers. High-repetition rate, CEP-stable, few cycle pulses have been successfully generated by OPAs operating in the visible part of the spectrum. Shifting the amplified bandwidth towards longer wavelengths would be clearly profitable. In fact, the shorter harmonic wavelength cut-off will allow significantly extending the harmonics spectrum and consequently shorten as pulse durations. Until know, generation of CEP-stable, few-cycle pulses in the infrared at ultra-high repetition rates was impossible due to the issue of generating a broadband infrared seed directly from a fiber laser. This thesis describes the implementation of new supercontinuum-seeded parametric sources, specifically designed for isolated attosecond pulses generation with high energy or high repetition rate.The development of a CEP-stable three-stages OPA source is reported, amplifying a 700 nm broad spectrum at a central wavelength of 1,75 µm with an energy of 450 µJ at a 10 Hz repetition rate. Then, a new architecture based on a two-stage cascaded OPA pumped by a home-made fiber laser is presented, which allowed us to generate CEP-stable 3-cycles pulses at the central wavelength of 2,2 µm, with an energy of 5 µJ at 100 kHz. Finally, we discuss the possibility of increasing the output power of parametric amplifiers to several tens of watts with broadband parametric combination of several fiber-pump beams.
2

Development of an original 10 kHz Ti : Sa regenerative cavity allowing 17 fs CEP stable 1 kHz TW-class amplification or wavelength tunability / Développement d’une nouvelle configuration de cavité régénérative à 10 kHz, permettant l’amplification à1 kHz d’impulsions de durée 17 fs, stabilisées en CEP dans la classe TW ou accordables en longueur d’onde à10 ou 1 kHz

Golinelli, Anna 21 January 2019 (has links)
Au cours de dix dernières années la science aux attoseconde ou Physique au champ-fort a été l’objet d’un fort développement. La production d’impulsions laser énergétiques de courte durée à haute cadence et stabilisées en CEP constitue la première étape pour accéder aux dynamiques ultra-rapides caractérisant l’interaction de la matière avec une source de lumière cohérente, intense et ultra-rapide. Le travail de cette thèse consiste à améliorer globalement les performances d’un système laser Ti:Sa à haute cadence optimisé pour la génération des impulsions attoseconde. Nous avons développé une nouvelle configuration de cavité régénérative fonctionnant à 10 kHz qui permet une meilleure gestion des effets thermiques dans le cristal. En sortie de l’amplificateur les impulsions atteignent des valeurs de puissance de 5 W en bande étroite (35 fs), ou 2.7 W en bande spectrale large permettant une compression des impulsions proche de 17 fs. La CEP des impulsions en sortie d’amplificateur a été stabilisée ; le bruit résiduel mesuré tir-à-tir est de 210 mrad pendant trois heures.L’amplificateur peut supporter également le fonctionnement en mode accordable, en sélectionnant des spectres de 30 à 40 nm de largeur à mi-hauteur et en accordant leur longueur d’onde centrale dans une gamme de 80 nm autour de 800 nm. Nous avons conçu et mis en fonctionnement un amplificateur multi-passages non-cryogéné à imagerie par lentille thermique pour accroître la puissance des impulsions jusqu’à 10 W à une cadence de 1 kHz. Le régime de forte saturation d’amplificateur garantit une variation négligeable (±3% pic à pic) de la puissance des impulsions en sortie du module, face à une variation importante de la puissance en entrée (±25% pic à pic) sur la bande spectrale accordable. L’amplification peut encore être plus importante grâce à une ligne d’amplification à refroidissement cryogénique, qui permet d’atteindre des puissances au niveau TW, à la cadence de 1 kHz, tout en maintenant un régime de courte durée (17.5 fs) et stabilité en CEP (350 mrad de bruit résiduel tir-à-tir). Nous proposons aussi une étude des sources de bruit de CEP dans les modules hautement dispersifs: nous avons conçu une nouvelle approche numérique sur la base d’un logiciel de tracé de rayon commercial (Zemax) pour évaluer les variations de CEP dans les modules contenant réseaux de diffraction. / The last decade has seen a lot of progress in attosecond science or in strong field physics. Generating energetic, few-cycle laser pulses with stabilized Carrier-Envelope Phase at high repetition rate constitutes the first step to access the ultra-fast dynamics underlying the interaction of matter with intense, ultrashort coherent light source. The work of this thesis consists in globally improving the performances of a high repetition rate Ti:Sa laser system optimized for attosecond science. We present an original 10 kHz Ti:Sa CPA laser based on an newlydesigneddouble-crystal cavity for thermal lensing management. The amplifier delivers up to 5 W in narrow band mode (35 fs pulses), or 2.7 W in broad band mode, supporting 17 fs pulses after temporal compression. We demonstrate shot-to-shot CEP stabilization with a remaining noise of 210 mrad over three hours at the front-end output. In parallel to the short pulse duration operation mode, it is possible to use the front end in a wavelength tunability mode within a 80 nm range around 800 nm, with a resolution of 1 nm and 30 to 40 nm of bandwidth. We designed and demonstrated a complete water-cooled lens-less multipass amplifier using thermal lensing for modeadaptation boosting the pulse energy up to 10mJ at 1 kHz repetition rate (up to 10 W). The saturation regime of the amplifier ensures negligible variation (±3% peak to peak) of the output power for significant variation of the input power (±25% peak to peak) over the tunability range. The energy scalability of the front-end is demonstrated by coupling its output to cryogenically cooled amplifier, delivering 1 kHz, TW-class pulses at 17.5 fs and CEP stabilized with a residual noise of 350 mrad. A study of CEP noise sources in high dispersive module is also addressed, proposing a numerical approach based on a commercial ray-tracing software (Zemax) for predicting CEP fluctuation in grating based modules.
3

High-repetition rate CEP-stable Yb-doped fiber amplifier for high harmonic generation / Stabilisation en CEP d’un amplificateur à fibre dopée Yb à haute cadence pour la génération d'harmoniques d’ordre élevé

Natile, Michele 07 June 2019 (has links)
Depuis une vingtaine d’années, la physique attoseconde, via le phénomène de génération d’harmoniques d’ordres élevés (HHG), a permis de nombreuses avancées dans la compréhension des phénomènes de dynamique ultra-rapide. Les lasers femtoseconde émettant des impulsions de fortes énergies et de durées de quelques cycles optiques sont les outils indispensables à cette physique. De plus, la phase entre la porteuse et l’enveloppe (CEP) des impulsions doit être contrôlée. Récemment les lasers basés sur les fibres dopées ytterbium ont permis de transposer les expériences d’HHG à haute cadence. La stabilisation de la CEP pour ce type de systèmes constitue la brique manquante au développement de sources à haute cadence pleinement compatibles avec ces applications. Cette thèse a été consacrée à la stabilisation CEP d’un laser à fibre dopée ytterbium pour une application à la génération de rayonnement cohérent dans l’XUV à fort flux de photon. Dans la première partie nous présentons l’architecture d’une source à un taux de répétition de 100 kHz stable en CEP émettant des impulsions de 30 microjoules et 96 fs. Ce système constitue une preuve de principe pour les futures sources haute énergie. La stabilisation de CEP est assurée par une architecture hybride composée d’un injecteur stabilisé passivement suivi d’un amplificateur de puissance stabilisé activement. Un bruit résiduel de CEP inférieur à 400 mrad est obtenu dans différentes configurations, de la mesure courte durée (1 s) tir à tir jusqu’à la mesure sur une heure de fonctionnement. Dans la seconde partie nous présentons la mise au point d’une ligne HHG XUV optimisée à 13 nm sur les paramètres d’un laser à fibre, pour des applications à l’imagerie par diffraction cohérente. / In the last two decades, attosecond physics, based on the high harmonic generation (HHG) phenomenon, has allowed a better understanding of ultrafast dynamics in the microcosm. High-energy few-cycles carrier-envelope phase (CEP) stabilized sources are the main enabling tools for this physics. Recently, temporally compressed Ytterbium-doped fiber amplifiers have been successfully used as high XUV photon flux HHG drivers. CEP stabilization of these sources would ensure their full compatibility with attoscience. The thesis is devoted to the CEP stabilization of a high repetition rate Yb-doped fiber femtosecond source, for high XUV photon flux beamline applications. In the first part, we present the architecture of such a source at 100 kHz repetition rate delivering 30 microjoules 96 fs CEP-stable pulses. It constitutes a test bench for future energy-scaled few-cycle sources. The CEP stabilization is ensured in a hybrid architecture including a passively stabilized frontend followed by an actively stabilized power amplifier. A residual CEP noise <400 mrad is measured using various setups, including a shot-to-shot measurement over 1 s and a long-term stability over 1 h. In the second part, we discuss the design of a high flux HHG beamline optimized for a future generation of fiber-based driver at 13 nm for applications to coherent diffraction imaging.

Page generated in 0.1414 seconds