• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanolaminate coatings to improve long-term stability of plasmonic structures in physiological environments

Daniel, Monisha Gnanachandra 28 June 2017 (has links)
The unprecedented ability of plasmonic metal nano-structures to concentrate light into deep-subwavelength volumes has propelled their use in a vast array of nanophotonics technologies and research endeavors. They are used in sensing, super-resolution imaging, SPP lithography, SPP assisted absorption, SPP-based antennas, light manipulation, etc. To take full advantage of the attractive capabilities of CMOS compatible low-cost plasmonic structures based on Al and Cu, nanolaminate coatings are investigated to improve their long-term stability in corrosive physiological environments. The structures are fabricated using phase-shifting PDMS masks, e-beam deposition, RIE, Atomic Layer Deposition and Rapid Thermal Annealing. An alternate approach using Nanosphere Lithography (NSL) was also investigated. Films were examined using ellipsometry, atomic force microscopy and transmission measurements. Accelerated in-situ tests of Hafnium Oxide/Aluminum Oxide nanolaminate shells in a mildly pH environment with temperatures akin to physiological environments emulated using PBS show greatly enhanced endurance, with stable structures that last for more than one year. / Master of Science

Page generated in 0.0929 seconds