• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inégalités de Carleman près du bord, d’une interface et pour des problèmes singuliers / Carleman estimates near boundaries, interfaces and for singular problems

Buffe, Rémi 22 November 2017 (has links)
Dans la première partie de ce mémoire, on s’attache à l’obtention d’Inégalités de Carleman elliptiques pour des opérateurs d’ordre deux au bord pour des conditions dites de Ventcel. Dans une seconde partie, on démontre une Inégalité adaptée aux multi-interfaces, pour des opérateurs elliptiques d’ordre quelconque, sous la condition classique de sous-ellipticité de Hörmander, ainsi que sous une condition de compatibilité entre les opérateurs sur la multi-interface et l’intérieur, dite de recouvrement. Cette condition généralise la condition de Lopatinskii. Enfin, dans une troisième partie, on s’intéresse à la contrôlabilté de l’équation de la chaleur et la stabilisation faible de l’équation des ondes dans des domaines polygonaux. / In the first part of this thesis, we derive elliptic Carleman estimates for second-order operators with Ventcel boundary conditions. In the second part, we prove a proper estimate near multi-interfaces for elliptic operatorsof any order, under the classical sub-ellipticity condition of Hörmander and under a compatibility condition between the operators in the interior and at the multi-interface, called the covering condition. This condition is a generalization of the well-known Lopatinskii condition. Finally, in the third part, we focus on controllability properties of the heat equation, and stabilization properties of the wave equation for polygonal domains, with mixed boundary conditions.

Page generated in 0.1702 seconds