• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 951
  • 406
  • 188
  • 99
  • 53
  • 22
  • 17
  • 16
  • 15
  • 10
  • 9
  • 9
  • 6
  • 6
  • 5
  • Tagged with
  • 2187
  • 941
  • 482
  • 270
  • 252
  • 239
  • 206
  • 171
  • 154
  • 142
  • 130
  • 115
  • 114
  • 109
  • 99
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Seasonal, inter-annual, and spatial variation in ringed seal feeding ecology in Hudson Bay assessed through stable isotope and fatty acid biomarkers

Young, Brent G. 18 February 2013 (has links)
Current trends toward warmer air temperatures and longer ice free seasons in Hudson Bay are expected to cause changes in Arctic marine ecosystem dynamics. Ringed seals (Phoca hispida) will likely experience changes in levels of predation, competition, and prey availability. The purpose of this thesis was to investigate seasonal, inter-annual, and spatial variation in Hudson Bay ringed seal feeding ecology. Fatty acid composition, δ15N, and δ13C varied significantly by season, suggesting seasonal changes in foraging habitat and diet. Spatial differences in ringed seal stable isotope ratios occurred between western and eastern Hudson Bay, and there was a strong relationship between spring air temperature and δ15N. Peak δ15N occurred within a range in spring air temperatures between approximately -5°C and -2°C. I propose that the high δ15N observed in ringed seals within this temperature range is indicative of relatively greater importance of capelin (Mallotus villosus) in the ringed seal diet.
302

Narwhal (Monodon monoceros) diet and dive behaviour as an assessment of foraging adaptability with changing climate

Watt, Cortney January 2014 (has links)
Narwhals (Monodon monoceros) are sentinel species in the Arctic environment and are a vital component for Inuit culture and subsistence. The Arctic is undergoing rapid changes in temperature and sea ice cover and relatively little is known about how this has and will change narwhal foraging behaviour. There are three narwhal populations in the world, the Baffin Bay (BB), Northern Hudson Bay (NHB), and East Greenland (EG) populations; however, foraging behaviour, in terms of dive behaviour and primary dietary components, has really only been investigated in the BB population. Using a combination of stable isotopes, fatty acids, genetic techniques, and satellite tracking technologies I evaluated foraging behaviour in all three of the world’s narwhal populations. I also investigated social structure in the BB population to determine how adaptable narwhals are to a changing and dynamic Arctic environment. Stable isotopes (δ13C and δ15N) and fatty acids are chemical signatures in the tissues of an organism that can provide long-term information on their diet over varying temporal scales depending upon the tissue. Stable isotope analysis in the three narwhal populations found they forage on different primary prey, suggesting narwhal are adaptable in their preferred prey and that there is potential for them to adjust foraging behavior in the face of changing climate. Dietary changes were also assessed over three decades to determine how sea ice changes have affected narwhal foraging for the NHB and BB populations. Dietary changes were evident and can be attributed to changes in sea ice patterns and an altered migratory pathway for narwhals. An understanding of narwhal social structure is also needed to determine how behaviourally flexible narwhal are in diet and site fidelity. Genetic relatedness and dietary signatures from fatty acids were assessed for an entrapped group to determine if individuals that are closely related forage together, which would support a matrilineally driven social structure where females teach their young foraging strategies, and/or travel and forage together. I found no evidence that narwhals form a matrilineal social group, but they may display a fission-fusion structure, which may be an adaptation to patchy prey distribution in the Arctic. Finally, narwhal dive behaviour in all three populations was investigated to determine if dive behaviour could be used to predict diet. Dive differences among populations did correspond with differences in diet, suggesting that narwhals employ specialized foraging strategies. This has repercussions for their ability to adapt to ecosystem changes. Overall, narwhals may be more flexible in terms of their foraging behaviour than previously believed. However, an increased resilience to changing food webs will not be the only predictor of how narwhals will fare in the face of a changing climate; how they respond to increased industrial activities in their preferred habitats, increased predation from southern predators, and increased competition from southern cetaceans and humans alike, will play an equally large role in how they cope with the future.
303

Energy Flow and Food Web Ecology along a Hydroperiod Gradient

Schriever, Tiffany 07 January 2013 (has links)
Identifying the ecological mechanisms that determine food web structure is critical for understanding the causes and consequences of diversity. The objective of this thesis was to identify the mechanisms structuring aquatic food webs across environmental gradients from a multi-level perspective (individual to ecosystem) using integrative methodology and field experiments to test classic ecological theory. My results demonstrate support for the dynamic constraints hypothesis, which predicts habitats with greater disturbance should have shorter food chains, but are not consistent with the ecosystem size hypothesis that predicts larger ecosystems have longer food chains. Insect and amphibian richness increased with increasing pond size and hydroperiod, indicating that insertion of new consumers into pond communities was driving variation in food-chain length. A multivariate analysis testing the influence of physicochemical variables on food-web characteristics revealed that hydroperiod and pond area had a strong influence on amphibian and invertebrate assemblages, trophic diversity and 15N range. Food-chain length did not respond strongly to any one variable, but instead responded weakly to multiple environmental variables, suggesting interacting influences on food-web structure. Conversely, the trophic niche of amphibian larvae was not influenced by pond hydroperiod, but did exhibit ontogenetic diet shifts. Populations of amphibian larvae with broader niche widths also had increased individual variation, supporting the niche variation hypothesis. In addition, I assessed whether species diversity influenced the magnitude of cross-habitat resource flow between aquatic and terrestrial habitats via emerging aquatic insects, metamorphosing amphibians, and litter deposition. Deposition into ponds far exceeded carbon exported via insect and amphibian emergences. We found a negative relationship between resource flux and the diversity of amphibians and insects, which contradicts the general pattern of positive biodiversity-ecosystem function relationships. My research strongly suggests environmental variation is a key process in shaping food-web structure and function and that multiple methodologies are needed to understand temporal and spatial dynamics of aquatic ecosystems.
304

The Use of Stable and Radiocarbon Isotopes as a Method for Delineating Sources of Organic Matter in Anchialine Systems

Neisch, Julie A 03 October 2013 (has links)
Submerged caves, locally referred to as cenotes, can be found throughout the Yucatan Peninsula of Mexico. These nutrient poor, aphotic “underground estuaries” lack photosynthetic primary productivity, but are often found underlying high primary productivity areas such as mangroves and tropical forests. Adjacent ecosystems contribute organic carbon to the cave systems via percolation, where it is then utilized by the obligate, cave-dwelling fish and invertebrates. Another potential pathway through which organic carbon can enter the cave food web is through chemosynthesis. Chemoautotrophic sulfur-oxidizing or nitrifying bacteria have been found in the hydrogen sulfide layer or in the sediments of some anchialine caves. Our study utilizes 13C/12C and 15N/14N stable isotopes as well as 14C radiocarbon dating to determine and compare the sources of organic matter entering a coastal anchialine cave (Cenote Aak Kimin) versus an inland cave (Cenote Maya Blue) in the Yucatan Peninsula. Stable isotopes have long been employed in tropic investigations. This study, however, is the first to utilize radiocarbon isotopes in anchialine caves. The use of both stable and radiocarbon isotopes as source indicators provides greater discrimination in systems that contain numerous carbon sources or indistinct trophic levels, particularly to distinguish between chemoautotrophic versus photosynthetically derived carbon. Results indicate that chemosynthetically derived organic carbon contributes substantially to the diet of some crustaceans, such as the stygobitic shrimp Typhlatya, while other species remain dependent on detrital inputs. Depleted δ13C values and aged radiocarbon values (as low as -47.51‰ and 1840 yrs. for Typhlatya spp.) in comparison to particulate and sediment δ13C values (lowest -32.07‰ and -28.43‰, respectively). A comparison of isotopic values between Cenote Aak Kimin and Cenote Maya Blue suggests that the trophic web of the coastal cave incorporates more photosynthetic or detrital carbon, while the inland cave, with more depleted 13C and 14C values, relies more heavily on chemoautotrophic carbon. Within both systems, however, distinct photosynthetic and chemoautotrophic levels were identified. Water quality parameters, especially dissolved oxygen and pH, support the hypothesis of bacterial activity at the halocline. Anchialine systems in the Yucatan Peninsula are threatened due to increases in tourism, development, and pollution. Quantifying and qualifying the inputs of organic carbon is vital for the management and conservation of the area’s freshwater resources.
305

The City and the Stream: Impacts of Municipal Wastewater Effluent on the Riffle Food Web in the Speed River, Ontario

Robinson, Chris January 2011 (has links)
Fast paced population growth in urban areas of southern Ontario is putting increased pressure on the surrounding aquatic environment. The City of Guelph uses the Speed River to assimilate its municipal wastewater effluent. With a projected 57% population increase in the watershed by 2031, the assimilative capacity of the river may be challenged in the coming years. The Guelph Wastewater Treatment Plant uses tertiary treatment methods greatly reducing ammonia, suspended solids and phosphate concentrations in the effluent. However there are still impacts detectable related to excessive nutrients released into this relatively small river (6th order) which promotes algae and aquatic macrophyte growth. There is also concern about a variety of emerging contaminants that may enter the river and impact the health of the ecosystem. The research in this thesis examined the seasonal and spatial variability and extent of the impacts of the wastewater effluent on the riffle fish communities in the Speed River. Stable isotope signatures (δ13C and δ15N) were used to understand the changes in the dominant benthic fish species, Rainbow Darters (Etheostoma caeruleum) and Greenside Darters (E. blennioides), relative to changes in invertebrate signatures and their abundance. Rainbow Darters were extremely abundant relative to Greenside Darters at the site immediately downstream of the effluent outfall, particularly in August. The benthic invertebrate community was distinctly different downstream of the effluent outfall, especially in the summer, with a reduced abundance of Elmidae beetle larvae and increased abundance of isopods (Caecidotea intermedius) compared to upstream. δ13C and δ15N of the two darters species were similar at all sites in May and July, but in August and October Rainbow Darter signatures were more enriched in the two heavier isotopes at sites downstream of the effluent outfall. The vast majority of invertebrate taxa sampled were also enriched at the downstream sites. An analysis of Rainbow and Greenside Darter stomach contents revealed that Rainbow Darters incorporated more isopods and other invertebrates in their diet, especially at the immediate downstream sites suggesting that they are more adaptable to the altered downstream environment. The feeding habits of Greenside Darters appear to change between July and August in response to changes in habitat and food availability. They are potentially consuming food organisms with less enriched isotopic signatures, which results in their isotopic signatures not rising during these months like most of the invertebrates and other fish. Alternatively, the Greenside Darters may move across the stream to feed on invertebrates that remain unexposed to the wastewater effluent. These impacts, although subtle, may be a reflection of the Speed River ecosystem being compromised by nutrient inputs from the wastewater effluent. With the impending increase in demand on the treatment plant (e.g., population growth), ongoing treatment and infrastructure improvements may be needed in the future to maintain the current ecosystem structure.
306

Ecohydrological Controls and Effects of Rhizome Integration on the Performance of Arundo donax in a Rio Grande Riparian Zone

Kui, Li 2011 August 1900 (has links)
This study focused on an invasive riparian reed grass, Arundo donax L., a clonal plant of the family Poaceae that is widely distributed in North America. Water availability, including water taken up from the roots locally or transported from the neighboring ramets, may affect the performance of A. donax in riparian zones. The first objective was to find out how moisture gradients affected the performance of A. donax in riparian zones. I measured leaf photosynthetic rate, leaf δ13C ratio, and plant growth-related parameters across two summer growing seasons at four transects perpendicular to the water course on the Rio Grande in South Texas. The second objective was to find out whether physiological integration existed in A. donax and how resource sharing, if any, affected plant growth. A rhizome severing experiment was conducted on five paired plots to compare growth-related parameters between plots with rhizomes severed and intact at 3, 7, and 11 weeks after treatment. Heavy water (δ 2H ~1800‰) was applied on three 1-m2 area over 3 successive days and rhizome samples were collected beyond the watering zone after 5, 24, and 48 hours of last watering. At short-term scales, A. donax performance was adversely affected by both drought and inundated conditions; over longer time scales, plant performance decreased as water availability declined in general, but biomass and stem density were similar across moisture gradients. I also found evidence of physiological integration in A. donax. Water was transported through interconnected rhizomes at least 3.5 m; transport distances averaged 1.67 m. Rhizome severing stimulated higher ramet production initially but over longer periods produced shorter thinner stems with lower flood tolerance. However, after 11 weeks of re-growth, plot-level biomass was similar between plots with severed and intact rhizomes. These results suggest that performance of A. donax is affected by water availability in riparian zones; however, clonal plant plasticity, water use efficiency, and clonal integration ameliorate impacts of water stress on the performance of A. donax. Such traits enhance its resource use, which could potentially increase competitive ability rate of establishment, and extent of this invasive species in heterogeneous riparian environments.
307

Water-use efficiency and productivity in native Canadian populations of Populus trichocarpa and Populus balsamifera

Pointeau, Virginie M. 05 1900 (has links)
Afforestation and reforestation programs utilizing available fields for biofuel production, carbon sequestration, and other uses linked to climate change are looking to tree physiologists to identify species and genotypes best-suited to their purposes. The ideal poplar genotype for use in Canadian programs would be drought-resistant, cold-climate adapted, and fast-growing, thus requiring an understanding of links between a variety of physiological traits linked to growth and productivity. This study examined the basis for variations in water-use efficiency within four selected populations of Populus trichocarpa and Populus balsamifera (2 provenances each). Each species included both a northern and a southern provenance. Correlations between water-use efficiency, nitrogen-use efficiency, ¹³C/¹²C isotope ratio, stomatal conductance, and overall productivity were evaluated. Gas exchange variables measured included net photosynthesis, transpiration rate, stomatal conductance, and intercellular CO₂ content. Water-use efficiency and ¹³C content across all genotypes were highly correlated. Results suggested that variation in water-use efficiency was primarily related to variation in stomatal conductance across all genotypes. Whereas differences in net photosynthesis in this study were not significant between species, P. balsamifera did reveal a higher average stem volume overall. Although variation in stomatal conductance was the major determinant of differences in water-use efficiency, positive correlations were found between ¹³C isotope abundance and net photosynthesis in both P. balsamifera provenances. In this regard, results for the northern P. balsamifera provenance are the most consistent across all gas-exchange and growth trait correlations, in terms of meeting expectations for sink-driven water-use efficiency. The findings in this study suggest the possibility of identifying poplar genotypes with an absence of trade-off between water-use efficiency and nitrogen-use efficiency, notably among genotypes from the northern P. balsamifera provenance, near Gillam.
308

Stable isotope tracers of landfill leachate impacts on aquatic systems

North, Jessica C., n/a January 2006 (has links)
The present study aimed to determine whether stable isotope techniques can be universally applied to detect landfill leachate contamination in aquatic systems. Results of analysis of ��C in dissolved inorganic carbon ([delta]��C-DIC), deuterium and �⁸O in water ([delta]D-H₂O and [delta]�⁸O-H₂O), and �⁵N of dissolved inorganic nitrogen components ([delta]�⁵N-NH₄⁺ and [delta]�⁵N-NO₃⁻) were presented for leachate, surface, and ground water samples collected from seven landfills located throughout New Zealand between 2003 and 2006. The unique conditions within a landfill lead to measurable fractionations in the isotopic ratios of the products of degradation. Results of isotope and ancillary parameter analyses enabled the discernment of different types of leachate, resulting from different microbial processes within the landfill environment. The isotopic characterisation of leachate enabled improved interpretation of geochemical data from potentially impacted surface and ground waters, and provides useful insight to landfill development for landfill operators. A general isotopic fingerprint delineated by [delta]��C-DIC and [delta]D-H₂O values showed leachate to be isotopically distinct from uncontaminated surface and ground water for samples analysed in the present study. However, not all water samples identified as leachate-impacted via site-specific assessments exhibited isotopic values that overlapped with the general leachate fingerprint. This highlights the need to investigate each site individually, within the context of a possibly global leachate isotope signature. Site-specific investigations revealed the effectiveness of applying [delta]�⁸O-H₂O and [delta]�⁵N-NH₄⁺ or [delta]�⁵N-NO₃⁻, in addition to [delta]��C-DIC and [delta]D-H₂O analyses, to the detection of leachate impact on aquatic systems. Furthermore, ancillary parameters such as alkalinity and ammonium concentration enabled the construction of simple isotope mixing models for an estimate of the quantity of leachate contribution. Results of isotopic investigations of stream biota suggested potential for the development of bio-indicators to monitor leachate influence on aquatic ecosystems in landfill-associated streams. The present study demonstrated the probative power of stable isotope techniques applied to investigations of leachate impact on landfill-associated aquatic systems.
309

Developing compound-specific stable isotope tools for monitoring landfill leachate

Benbow, Timothy J, n/a January 2008 (has links)
This thesis has developed a suite of compound specific stable isotope tools to monitor landfill leachate and identify the infiltration of leachate to ground water and surface water. These tools have the power to indicate the fractional contribution multiple discrete sources of pollution are making to a single location. This journey began by developing two solid phase extraction (SPE) methods to extract non-polar and polar organic compounds from leachate with minimal fractionation of hydrogen or carbon isotopes. Non-polar compounds were successfully extracted using ENV+ SPE cartridges and polar compounds were successfully extracted using Strata-X SPE cartridges. The isotopic fractionation of non-polar compounds during ENV+ extraction varied significantly (up to 245⁰/₀₀ and 1.8⁰/₀₀ for D and ��C respectively, when eluted with acetonitrile and ethyl acetate, as recommended by manufacturers) but the fractionation of compounds eluted with dichloromethane was negligible (less than instrumental precision). Polar compounds were eluted from Strata-X cartridges with negligible isotopic fractionation using methanol. The direct comparison of SPE and liquid-liquid extraction found SPE to extract slightly more compound from leachate then liquid-liquid extraction (especially for polar compounds) and the isotopic compositions of compounds did not change with extraction methods. These new analytical methods subsequently were used to determine the isotopic compositions of organic compounds dissolved in leachates from three New Zealand landfills. The molecular and isotopic signature of leachate varied significantly between landfills, indicating the isotopic fingerprint of organic compounds in leachate is unsuitable as a universal tracer of leachate. However, compounds such as terpien-4-ol, methylethylbenzene and juvabione maintained their isotopic composition over short geographical distance-indicating their potential as site-specific tracers of leachate. Organic compounds analysed on a transect across the landfill boundary indicated polar compounds were more mobile than semi-volatile compounds and possessed a more conservative isotopic composition. However, hexadecanoic acid extracted from leachate and ground water was highly depleted in ��C (-72 ⁰/₀₀ to -40⁰/₀₀), indicative of methanogenic and sulfate reducing bacteria. These bacteria only live in highly reducing environments such as leachate; therefore their presence in the pristine environment can potentially indicate the release of leachate from the landfill. The final experiments traced the uptake and utilisation of leachate by periphyton. The isotopic composition of bulk periphyton, fatty acids and phytol indicated that microbial assimilation and utilisation of nutrients is a complex process. Fatty acid biomarkers for green algae and diatoms showed signs of leachate derived nutrients, however the availability of nutrients (carbon, nitrogen, water and light) caused significant changes in metabolic processes and isotopic compositions. Under slow growing conditions, the [delta]��C composition of periphyton became enriched in ��C as solar irradiation levels decreased (including shading by detritus and periphyton), while the [delta]D composition of fatty acid was controlled by the internal recycling of hydrogen. This study indicated the power of compound specific isotope analysis as a tool to detect the release of landfill leachate from a landfill, especially at locations with multiple potential sources of contaminants, and provides a sound platform for future research.
310

Intrinsic Isotopic Tracers as Independent Evaluators for China Lake Basin, CA

Einloth, Sharon L. January 2000 (has links) (PDF)
Thesis (M.S. - Hydrology and Water Resources)--University of Arizona. / Includes bibliographical references (leaves 118-121).

Page generated in 0.0326 seconds