• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nelson-type Limits for α-Stable Lévy Processes

Al-Talibi, Haidar January 2010 (has links)
<p>Brownian motion has met growing interest in mathematics, physics and particularly in finance since it was introduced in the beginning of the twentieth century. Stochastic processes generalizing Brownian motion have influenced many research fields theoretically and practically. Moreover, along with more refined techniques in measure theory and functional analysis more stochastic processes were constructed and studied. Lévy processes, with Brownian motionas a special case, have been of major interest in the recent decades. In addition, Lévy processes include a number of other important processes as special cases like Poisson processes and subordinators. They are also related to stable processes.</p><p>In this thesis we generalize a result by S. Chandrasekhar [2] and Edward Nelson who gave a detailed proof of this result in his book in 1967 [12]. In Nelson’s first result standard Ornstein-Uhlenbeck processes are studied. Physically this describes free particles performing a random and irregular movement in water caused by collisions with the water molecules. In a further step he introduces a nonlinear drift in the position variable, i.e. he studies the case when these particles are exposed to an external field of force in physical terms.</p><p>In this report, we aim to generalize the result of Edward Nelson to the case of α-stable Lévy processes. In other words we replace the driving noise of a standard Ornstein-Uhlenbeck process by an α-stable Lévy noise and introduce a scaling parameter uniformly in front of all vector fields in the cotangent space, even in front of the noise. This corresponds to time being sent to infinity. With Chandrasekhar’s and Nelson’s choice of the diffusion constant the stationary state of the velocity process (which is approached as time tends to infinity) is the Boltzmann distribution of statistical mechanics.The scaling limits we obtain in the absence and presence of a nonlinear drift term by using the scaling property of the characteristic functions and time change, can be extended to other types of processes rather than α-stable Lévy processes.</p><p>In future, we will consider to generalize this one dimensional result to Euclidean space of arbitrary finite dimension. A challenging task is to consider the geodesic flow on the cotangent bundle of a Riemannian manifold with scaled drift and scaled Lévy noise. Geometrically the Ornstein-Uhlenbeck process is defined on the tangent bundle of the real line and the driving Lévy noise is defined on the cotangent space.</p>
2

Nelson-type Limits for α-Stable Lévy Processes

Al-Talibi, Haidar January 2010 (has links)
Brownian motion has met growing interest in mathematics, physics and particularly in finance since it was introduced in the beginning of the twentieth century. Stochastic processes generalizing Brownian motion have influenced many research fields theoretically and practically. Moreover, along with more refined techniques in measure theory and functional analysis more stochastic processes were constructed and studied. Lévy processes, with Brownian motionas a special case, have been of major interest in the recent decades. In addition, Lévy processes include a number of other important processes as special cases like Poisson processes and subordinators. They are also related to stable processes. In this thesis we generalize a result by S. Chandrasekhar [2] and Edward Nelson who gave a detailed proof of this result in his book in 1967 [12]. In Nelson’s first result standard Ornstein-Uhlenbeck processes are studied. Physically this describes free particles performing a random and irregular movement in water caused by collisions with the water molecules. In a further step he introduces a nonlinear drift in the position variable, i.e. he studies the case when these particles are exposed to an external field of force in physical terms. In this report, we aim to generalize the result of Edward Nelson to the case of α-stable Lévy processes. In other words we replace the driving noise of a standard Ornstein-Uhlenbeck process by an α-stable Lévy noise and introduce a scaling parameter uniformly in front of all vector fields in the cotangent space, even in front of the noise. This corresponds to time being sent to infinity. With Chandrasekhar’s and Nelson’s choice of the diffusion constant the stationary state of the velocity process (which is approached as time tends to infinity) is the Boltzmann distribution of statistical mechanics.The scaling limits we obtain in the absence and presence of a nonlinear drift term by using the scaling property of the characteristic functions and time change, can be extended to other types of processes rather than α-stable Lévy processes. In future, we will consider to generalize this one dimensional result to Euclidean space of arbitrary finite dimension. A challenging task is to consider the geodesic flow on the cotangent bundle of a Riemannian manifold with scaled drift and scaled Lévy noise. Geometrically the Ornstein-Uhlenbeck process is defined on the tangent bundle of the real line and the driving Lévy noise is defined on the cotangent space.
3

Asymptotique des solutions d'équations différentielles de type frottement perturbées par des bruits de Lévy stables / Asymptotic of solutions of friction type differential equations disturbed by stable Lévy noise

Éon, Richard 05 July 2016 (has links)
Cette thèse porte sur l'étude d'équations différentielles de type frottement, c'est à dire d'équations de type attractive, avec un unique point stable 0, caractérisant la vitesse d'un objet soumis à une force de frottement. La vitesse de cet objet subit des perturbations aléatoires de type Lévy. Dans une première partie, nous nous intéressons aux propriétés fondamentales de ces EDS : existence et unicité de la solution, caractère markovien et ergodique de celle-ci et plus particulièrement le cas des processus de Lévy stable. Dans une deuxième partie, nous étudions la stabilité de la solution de ces EDS lorsque la perturbation est un processus de Lévy stable qui tend vers 0. En effet, nous démontrons l'existence d'un développement limité d'ordre un autour de la solution déterministe pour la vitesse et la position de l'objet. Dans une troisième partie, nous étudions le comportement asymptotique des solutions lorsque la vitesse initiale est nulle et que la perturbation est un processus de Lévy stable symétrique. Nous prouvons dans cette partie que l'accumulation de perturbations entraîne un comportement asymptotique gaussien de la position de l'objet, à condition que l'indice de stabilité du processus de Lévy et la croissance du potentiel soient suffisamment grand. Dans une quatrième partie, nous levons l'hypothèse de symétrie de la perturbation en démontrant le même résultat que dans la troisième partie mais avec une dérive. Pour cela, nous étudions tout d'abord la queue de distribution de la mesure invariante associée à la vitesse de l'objet. Enfin dans une dernière partie, nous nous intéressons au résultat de la troisième partie lorsque la perturbation est la somme d'un mouvement brownien et d'un processus de Lévy purement à sauts. Puis nous commençons l'étude de la dimension deux en traitant le cas où les équations sont découplées mais où les mouvement brownien directeurs sont dépendants. / This thesis deals with the study of friction type differential equations, in other words, attractive equations, with a unique stable point 0, describing the speed of an object submitted to a frictional force. This object's speed is disturbed by Lévy type random perturbations. In a first part, one is interested in fondamental properties of these SDE: existence and unicity of a solution, Markov and ergodic properties, and more particularly the case of stable Lévy processes.In a second part, one study the stability of the solution of these SDE when the perturbation is an stable Lévy process that tends to 0. In fact, one proves the existence of a Taylor expansion of order one around the deterministic solution for the object's speed and position. In a third part, one study the asymptotic behaviour of the solutions when the initial speed is 0 and the perturbation is a symmetric stable Lévy process. One proves that the amount of perturbations, if the stability's index of the Lévy process and the increasing of the potential are big enough, leads to a gaussian asymptotic behaviour for the object's position.In a forth part, one relaxes the assumption of symmetry of the perturbation by proving the same result as in the third part but with a drift. To do so, one first studies the tail of the invariant measure of the object's speed.Finally, in a last part, one is interested in the same result as in the third part when the perturbation is the sum of the Brownian motion and a pure jump stable Lévy process. Then, one begins the study of the dimension two by considering the case where the equations are separated but where the driving Brownian motions are dependent.

Page generated in 0.063 seconds